Aktive Filter: AZ-Feingliederung: Wirkungen von Arzneimitteln auf den Organismus (Pharmakodynamik)

Modul	akad.	Woche	Veranstaltung: Titel	LZ-Dimension	LZ-Kognitions-	Lernziel
	Periode				dimension	
M02	WiSe2023	MW 2	Vorlesung: Proteine als Drugtargets	Wissen/Kenntnisse	verstehen	am Beispiel der ACE-Hemmer zur Behandlung arterieller Hypertonie
				(kognitiv)		beschreiben können, wie Medikamente Peptide / Proteine regulieren.
M02	WiSe2023	MW 2	Vorlesung: Proteine als Drugtargets	Wissen/Kenntnisse	erinnern	einzelne Wirkungen von Pharmaka (Beispiele aus der Vorlesung: Penicillin,
				(kognitiv)		Erythropoetin, Insulin, Diazepam) auf Drugtargets benennen können.
M03	WiSe2023	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	den Wirkmechanismus verschiedener Antibiotika (Tetrazykline, Makrolide,
			Proteinbiosynthese)	(kognitiv)		Aminoglykoside) als Hemmstoffe der Translation beschreiben können.
M04	WiSe2023	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	verstehen	am Beispiel von Protonenpumpeninhibitoren, Benzodiazepinen und
			Aktivatoren und Inhibitoren	(kognitiv)		Lokalanästhetika darstellen können, auf welche Weise
						Ionentransportmechanismen beeinflusst werden können.
M04	WiSe2023	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	analysieren	erläutern können, wie Agonisten und Antagonisten von Acetylcholinrezeptoren
			Aktivatoren und Inhibitoren	(kognitiv)		benutzt werden, um die Funktion von Kanälen zu charakterisieren.
M04	WiSe2023	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	Beispiele von Wirkstoffen, die Rezeptortypen beeinflussen, nennen können
			Signalübertragung als pharmakologisches	(kognitiv)		(Beta-Blocker, Beta-Agonisten, Insulin, Corticoide).
			Konzept			
M04	WiSe2023	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	verstehen	die Rezeptortypen (ligandenaktivierte Ionenkanäle, G-Protein-gekoppelte
			Signalübertragung als pharmakologisches	(kognitiv)		Rezeptoren, Rezeptor-Tyrosinkinasen, intrazelluläre Rezeptoren) und deren
			Konzept			Bedeutung als pharmakologische Zielstrukturen beschreiben können.
M04	WiSe2023	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	die Begriffe Rezeptoren, Ligand, Ligand-Rezeptor Komplex, Affinität, intrinsische
			Signalübertragung als pharmakologisches	(kognitiv)		Aktivität, Agonist, Antagonist (kompetitiv, nicht-kompetitiv), inverser Agonist
			Konzept			definieren können.
M04	WiSe2023	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	die Begriffe 'Pharmakodynamik' und 'Pharmakokinetik' definieren können.
			Signalübertragung als pharmakologisches	(kognitiv)		
			Konzept			