Aktive Filter: AZ-Feingliederung: Wirkungen von Arzneimitteln auf den Organismus (Pharmakodynamik)

Modul	akad.	Woche	Veranstaltung: Titel	LZ-Dimension	LZ-Kognitions-	Lernziel
	Periode				dimension	
M02	SoSe2024	MW 2	Vorlesung: Proteine als Drugtargets	Wissen/Kenntnisse	verstehen	am Beispiel der ACE-Hemmer zur Behandlung arterieller Hypertonie
				(kognitiv)		beschreiben können, wie Medikamente Peptide / Proteine regulieren.
M02	SoSe2024	MW 2	Vorlesung: Proteine als Drugtargets	Wissen/Kenntnisse	erinnern	einzelne Wirkungen von Pharmaka (Beispiele aus der Vorlesung: Penicillin,
				(kognitiv)		Erythropoetin, Insulin, Diazepam) auf Drugtargets benennen können.
M02	WiSe2024	MW 2	Vorlesung: Einführung in die Pharmakologie -	Wissen/Kenntnisse	verstehen	am Beispiel der ACE-Hemmer zur Behandlung arterieller Hypertonie
			Fokus Proteine	(kognitiv)		beschreiben können, wie Medikamente Peptide / Proteine regulieren.
M02	WiSe2024	MW 2	Vorlesung: Einführung in die Pharmakologie -	Wissen/Kenntnisse	erinnern	einzelne Wirkungen von Pharmaka (Beispiele aus der Vorlesung: Penicillin,
			Fokus Proteine	(kognitiv)		Erythropoetin, Insulin, Diazepam) auf Drugtargets benennen können.
M02	SoSe2025	MW 2	Vorlesung: Einführung in die Pharmakologie -	Wissen/Kenntnisse	verstehen	am Beispiel der ACE-Hemmer zur Behandlung arterieller Hypertonie
			Fokus Proteine	(kognitiv)		beschreiben können, wie Medikamente Peptide / Proteine regulieren.
M02	SoSe2025	MW 2	Vorlesung: Einführung in die Pharmakologie -	Wissen/Kenntnisse	erinnern	einzelne Wirkungen von Pharmaka (Beispiele aus der Vorlesung: Penicillin,
			Fokus Proteine	(kognitiv)		Erythropoetin, Insulin, Diazepam) auf Drugtargets benennen können.
M03	SoSe2024	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	den Wirkmechanismus verschiedener Antibiotika (Tetrazykline, Makrolide,
			Proteinbiosynthese)	(kognitiv)		Aminoglykoside) als Hemmstoffe der Translation beschreiben können.
M03	WiSe2024	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	den Wirkmechanismus verschiedener Antibiotika (Tetrazykline, Makrolide,
			Proteinbiosynthese)	(kognitiv)		Aminoglykoside) als Hemmstoffe der Translation beschreiben können.
M03	SoSe2025	MW 4	Seminar 4.2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	den Wirkmechanismus verschiedener Antibiotika (Tetrazykline, Makrolide,
			Proteinbiosynthese)	(kognitiv)		Aminoglykoside) als Hemmstoffe der Translation beschreiben können.
M04	SoSe2024	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	verstehen	am Beispiel von Protonenpumpeninhibitoren, Benzodiazepinen und
			Aktivatoren und Inhibitoren	(kognitiv)		Lokalanästhetika darstellen können, auf welche Weise
						Ionentransportmechanismen beeinflusst werden können.
M04	SoSe2024	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	analysieren	erläutern können, wie Agonisten und Antagonisten von Acetylcholinrezeptoren
			Aktivatoren und Inhibitoren	(kognitiv)		benutzt werden, um die Funktion von Kanälen zu charakterisieren.
M04	WiSe2024	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	verstehen	am Beispiel von Protonenpumpeninhibitoren, Benzodiazepinen und
			Aktivatoren und Inhibitoren	(kognitiv)		Lokalanästhetika darstellen können, auf welche Weise
						Ionentransportmechanismen beeinflusst werden können.
M04	WiSe2024	MW 1	Seminar 3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	analysieren	erläutern können, wie Agonisten und Antagonisten von Acetylcholinrezeptoren
			Aktivatoren und Inhibitoren	(kognitiv)		benutzt werden, um die Funktion von Kanälen zu charakterisieren.
M04	SoSe2025	MW 1	Seminar 1.3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	verstehen	am Beispiel von Protonenpumpeninhibitoren, Benzodiazepinen und
			Aktivatoren und Inhibitoren	(kognitiv)		Lokalanästhetika darstellen können, auf welche Weise
						Ionentransportmechanismen beeinflusst werden können.

M04	SoSe2025	MW 1	Seminar 1.3: Kanäle und Carrier: Toxine als	Wissen/Kenntnisse	analysieren	erläutern können, wie Agonisten und Antagonisten von Acetylcholinrezeptoren
			Aktivatoren und Inhibitoren	(kognitiv)		benutzt werden, um die Funktion von Kanälen zu charakterisieren.
M04	SoSe2024	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	Beispiele von Wirkstoffen, die Rezeptortypen beeinflussen, nennen können
			Signalübertragung als pharmakologisches Konzept	(kognitiv)		(Beta-Blocker, Beta-Agonisten, Insulin, Corticoide).
M04	SoSe2024	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	verstehen	die Rezeptortypen (ligandenaktivierte Ionenkanäle, G-Protein-gekoppelte
			Signalübertragung als pharmakologisches Konzept	(kognitiv)		Rezeptoren, Rezeptor-Tyrosinkinasen, intrazelluläre Rezeptoren) und deren
						Bedeutung als pharmakologische Zielstrukturen beschreiben können.
M04	SoSe2024	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	die Begriffe Rezeptoren, Ligand, Ligand-Rezeptor Komplex, Affinität,
			Signalübertragung als pharmakologisches Konzept	(kognitiv)		intrinsische Aktivität, Agonist, Antagonist (kompetitiv, nicht-kompetitiv),
						inverser Agonist definieren können.
M04	SoSe2024	MW 2	Seminar 2: Beeinflussung zellulärer	Wissen/Kenntnisse	erinnern	die Begriffe 'Pharmakodynamik' und 'Pharmakokinetik' definieren können.
			Signalübertragung als pharmakologisches Konzept	(kognitiv)		
M04	WiSe2024	MW 2	Seminar 2: Grundlagen der Pharmakokinetik -	Wissen/Kenntnisse	erinnern	Beispiele von Wirkstoffen, die Rezeptortypen beeinflussen, nennen können
			Fokus Stofftransport	(kognitiv)		(Beta-Blocker, Beta-Agonisten, Insulin, Corticoide).
M04	WiSe2024	MW 2	Seminar 2: Grundlagen der Pharmakokinetik -	Wissen/Kenntnisse	verstehen	die Rezeptortypen (ligandenaktivierte Ionenkanäle, G-Protein-gekoppelte
			Fokus Stofftransport	(kognitiv)		Rezeptoren, Rezeptor-Tyrosinkinasen, intrazelluläre Rezeptoren) und deren
						Bedeutung als pharmakologische Zielstrukturen beschreiben können.
M04	WiSe2024	MW 2	Seminar 2: Grundlagen der Pharmakokinetik -	Wissen/Kenntnisse	erinnern	die Begriffe Rezeptoren, Ligand, Ligand-Rezeptor Komplex, Affinität,
			Fokus Stofftransport	(kognitiv)		intrinsische Aktivität, Agonist, Antagonist (kompetitiv, nicht-kompetitiv),
						inverser Agonist definieren können.
M04	WiSe2024	MW 2	Seminar 2: Grundlagen der Pharmakokinetik -	Wissen/Kenntnisse	erinnern	die Begriffe 'Pharmakodynamik' und 'Pharmakokinetik' definieren können.
			Fokus Stofftransport	(kognitiv)		
M04	SoSe2025	MW 2	Seminar 2.2: Grundlagen der Pharmakodynamik -	Wissen/Kenntnisse	erinnern	Beispiele von Wirkstoffen, die Rezeptortypen beeinflussen, nennen können
			Fokus Signalübertragung	(kognitiv)		(Beta-Blocker, Beta-Agonisten, Insulin, Corticoide).
M04	SoSe2025	MW 2	Seminar 2.2: Grundlagen der Pharmakodynamik -	Wissen/Kenntnisse	verstehen	die Rezeptortypen (ligandenaktivierte Ionenkanäle, G-Protein-gekoppelte
			Fokus Signalübertragung	(kognitiv)		Rezeptoren, Rezeptor-Tyrosinkinasen, intrazelluläre Rezeptoren) und deren
						Bedeutung als pharmakologische Zielstrukturen beschreiben können.
M04	SoSe2025	MW 2	Seminar 2.2: Grundlagen der Pharmakodynamik -	Wissen/Kenntnisse	erinnern	die Begriffe Rezeptoren, Ligand, Ligand-Rezeptor Komplex, Affinität,
			Fokus Signalübertragung	(kognitiv)		intrinsische Aktivität, Agonist, Antagonist (kompetitiv, nicht-kompetitiv),
						inverser Agonist definieren können.
M04	SoSe2025	MW 2	Seminar 2.2: Grundlagen der Pharmakodynamik -	Wissen/Kenntnisse	erinnern	die Begriffe 'Pharmakodynamik' und 'Pharmakokinetik' definieren können.
			Fokus Signalübertragung	(kognitiv)		
M06	WiSe2024	MW 3	Vorlesung: Lifestyle Drugs - Mechanismen,	Wissen/Kenntnisse	verstehen	die Auswirkungen von Lifestyle Drugs auf gesunde Menschen beschreiben
			Chancen und Risiken	(kognitiv)		können.

M06	SoSe2025	MW 3	Vorlesung: Lifestyle Drugs - Mechanismen,	Wissen/Kenntnisse	verstehen	die Auswirkungen von Lifestyle Drugs auf gesunde Menschen beschreiben
			Chancen und Risiken	(kognitiv)		können.
M08	WiSe2024	MW 2	Seminar 2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus von Thrombozytenaggregationshemmern am Beispiel
				(kognitiv)		von Acetylsalicylsäure erläutern können.
M08	WiSe2024	MW 2	Seminar 2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus von parenteralen (Heparin) und oralen (Cumarine)
				(kognitiv)		Antikoagulantien erklären können.
M08	WiSe2024	MW 2	Seminar 2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus der direkten Thrombininhibitoren am Beispiel von
				(kognitiv)		Dabigatran erläutern können.
M08	SoSe2025	MW 2	Seminar 2.2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus von Thrombozytenaggregationshemmern am Beispiel
				(kognitiv)		von Acetylsalicylsäure erläutern können.
M08	SoSe2025	MW 2	Seminar 2.2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus von parenteralen (Heparin) und oralen (Cumarine)
				(kognitiv)		Antikoagulantien erklären können.
M08	SoSe2025	MW 2	Seminar 2.2: Pharmakologie der Hämostase	Wissen/Kenntnisse	verstehen	den Wirkmechanismus der direkten Thrombininhibitoren am Beispiel von
				(kognitiv)		Dabigatran erläutern können.
M08	WiSe2024	MW 2	Praktikum: Labordiagnostik der Blutgerinnung:	Wissen/Kenntnisse	erinnern	Aktivatoren und Inhibitoren der Thrombozytenaggregation benennen können.
			Gerinnungstests	(kognitiv)		
M08	SoSe2025	MW 2	Praktikum: Labordiagnostik der Blutgerinnung:	Wissen/Kenntnisse	erinnern	Aktivatoren und Inhibitoren der Thrombozytenaggregation benennen können.
			Gerinnungstests	(kognitiv)		
M09	SoSe2024	MW 2	Vorlesung: Hautzellen als Synthese- und Wirkort	Wissen/Kenntnisse	verstehen	die Wirkung von Steroidhormonen und Retinsäure auf Haut und
			von Signalmolekülen	(kognitiv)		Hautanhangsgebilde beschreiben können.
M09	WiSe2024	MW 2	Vorlesung: Hautzellen als Synthese- und Wirkort	Wissen/Kenntnisse	verstehen	die Wirkung von Steroidhormonen und Retinsäure auf Haut und
			von Signalmolekülen	(kognitiv)		Hautanhangsgebilde beschreiben können.
M09	SoSe2025	MW 2	Vorlesung: Hautzellen als Synthese- und Wirkort	Wissen/Kenntnisse	verstehen	die Wirkung von Steroidhormonen und Retinsäure auf Haut und
			von Signalmolekülen	(kognitiv)		Hautanhangsgebilde beschreiben können.
M11	SoSe2024	MW 2	Seminar 2: Grundlagen der kardialen	Wissen/Kenntnisse	analysieren	für die in der medikamentösen Therapie der chronischen Herzinsuffizienz
			pharmakologischen Therapie	(kognitiv)		eingesetzten Wirkstoffklassen (RAAS-Inhibitoren, Betablocker, Digitalis, ARNI,
						SGLT2-Inhibitoren) die grundlegenden Wirkmechanismen beschreiben und
						ihre Hauptnebenwirkungen zuordnen können.
M11	WiSe2024	MW 2	Seminar 2: Pharmakologie des	Wissen/Kenntnisse	analysieren	für die in der medikamentösen Therapie der chronischen Herzinsuffizienz
			Herzkreislaufsystems - Fokus Herzinsuffizienz	(kognitiv)		eingesetzten Wirkstoffklassen (RAAS-Inhibitoren, Betablocker, Digitalis, ARNI,
						SGLT2-Inhibitoren) die grundlegenden Wirkmechanismen beschreiben und
						ihre Hauptnebenwirkungen zuordnen können.

M11	SoSe2025	MW 2	Seminar 2.2: Pharmakologie des	Wissen/Kenntnisse	analysieren	für die in der medikamentösen Therapie der chronischen Herzinsuffizienz
			Herzkreislaufsystems - Fokus Herzinsuffizienz	(kognitiv)		eingesetzten Wirkstoffklassen (RAAS-Inhibitoren, Betablocker, Digitalis, ARNI,
						SGLT2-Inhibitoren) die grundlegenden Wirkmechanismen beschreiben und
						ihre Hauptnebenwirkungen zuordnen können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	neurogene Mechanismen der Durchblutungsregulation anhand der
			Durchblutungsregelung	(kognitiv)		Gefäßwirkung einer Leitungsanästhesie und der pharmakologischen
						Beeinflussung durch Alpha-Sympathikolytika erklären können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel Adrenalin
			Durchblutungsregelung	(kognitiv)		und am Beispiel Renin-Angiotensin-Aldosteron-System und der
						pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	endotheliale Mechanismen der Durchblutungsregulation anhand des Beispiels
			Durchblutungsregelung	(kognitiv)		der Wandschubspannung (wall shear stress)-abhängigen Freisetzung von
						Stickstoffmonoxid (NO) und der pharmakologischen Wirkung von
						NO-Donatoren erklären können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren bei der
			Durchblutungsregelung	(kognitiv)		lokalen Durchblutungsregulation anhand der Beispiele 'lokale Entzündung'
						und 'anaphylaktische Reaktion' sowie der pharmakologischen Beeinflussung
						durch ASS und Antihistaminika erklären können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	neurogene Mechanismen der Durchblutungsregulation anhand der
			Durchblutungsregelung	(kognitiv)		Gefäßwirkung einer Leitungsanästhesie und der pharmakologischen
						Beeinflussung durch Alpha-Sympathikolytika erklären können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel Adrenalin
			Durchblutungsregelung	(kognitiv)		und am Beispiel Renin-Angiotensin-Aldosteron-System und der
						pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	endotheliale Mechanismen der Durchblutungsregulation anhand des Beispiels
			Durchblutungsregelung	(kognitiv)		der Wandschubspannung (wall shear stress)-abhängigen Freisetzung von
						Stickstoffmonoxid (NO) und der pharmakologischen Wirkung von
						NO-Donatoren erklären können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren bei der
			Durchblutungsregelung	(kognitiv)		lokalen Durchblutungsregulation anhand der Beispiele 'lokale Entzündung'
						und 'anaphylaktische Reaktion' sowie der pharmakologischen Beeinflussung
						durch ASS und Antihistaminika erklären können.
M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	neurogene Mechanismen der Durchblutungsregulation anhand der
			Durchblutungsregelung	(kognitiv)		Gefäßwirkung einer Leitungsanästhesie und der pharmakologischen
						Beeinflussung durch Alpha-Sympathikolytika erklären können.

M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel Adrenalin
			Durchblutungsregelung	(kognitiv)		und am Beispiel Renin-Angiotensin-Aldosteron-System und der
						pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären können.
M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	endotheliale Mechanismen der Durchblutungsregulation anhand des Beispiels
			Durchblutungsregelung	(kognitiv)		der Wandschubspannung (wall shear stress)-abhängigen Freisetzung von
						Stickstoffmonoxid (NO) und der pharmakologischen Wirkung von
						NO-Donatoren erklären können.
M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren bei der
			Durchblutungsregelung	(kognitiv)		lokalen Durchblutungsregulation anhand der Beispiele 'lokale Entzündung'
						und 'anaphylaktische Reaktion' sowie der pharmakologischen Beeinflussung
						durch ASS und Antihistaminika erklären können.
M12	SoSe2024	MW 1	Seminar 1: Magensaftsekretion	Wissen/Kenntnisse	verstehen	die Wirkungsmechanismen der beiden wichtigsten pharmakologischen
				(kognitiv)		Substanzklassen zur Beeinflussung der Magensaftsekretion
						(Protonenpumpenhemmer, H2-Rezeptor-Antagonisten) beschreiben können.
M12	WiSe2024	MW 1	Seminar 1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	die Wirkungsmechanismen der beiden wichtigsten pharmakologischen
			Regulation und Pharmakologische Interventionen	(kognitiv)		Substanzklassen zur Beeinflussung der Magensaftsekretion
						(Protonenpumpenhemmer, H2-Rezeptor-Antagonisten) beschreiben können.
M12	SoSe2025	MW 1	Seminar 1.1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	die Wirkungsmechanismen der beiden wichtigsten pharmakologischen
			Regulation und Pharmakologische Interventionen	(kognitiv)		Substanzklassen zur Beeinflussung der Magensaftsekretion
						(Protonenpumpenhemmer, H2-Rezeptor-Antagonisten) beschreiben können.
M12	SoSe2024	MW 2	Seminar 1: Biochemie und Pathobiochemie des	Wissen/Kenntnisse	verstehen	den Abbau von Purinnukleotiden sowie die pharmakologische Beeinflussung
			Nukleotidstoffwechsels	(kognitiv)		der Harnsäurebildung und -ausscheidung erläutern können.
M12	WiSe2024	MW 2	Seminar 1: Biochemie und Pathobiochemie des	Wissen/Kenntnisse	verstehen	den Abbau von Purinnukleotiden sowie die pharmakologische Beeinflussung
			Nukleotidstoffwechsels	(kognitiv)		der Harnsäurebildung und -ausscheidung erläutern können.
M12	SoSe2025	MW 2	Seminar 2.1: Biochemie und Pathobiochemie des	Wissen/Kenntnisse	verstehen	den Abbau von Purinnukleotiden sowie die pharmakologische Beeinflussung
			Nukleotidstoffwechsels	(kognitiv)		der Harnsäurebildung und -ausscheidung erläutern können.
M12	SoSe2024	MW 2	Praktikum: Epitheliale Transportvorgänge	Wissen/Kenntnisse	verstehen	die Wirkweise klinisch relevanter Inhibitoren (z. B. Amilorid, Furosemid), die
				(kognitiv)		den transepithelialen NaCl-Transport beeinflussen, erklären können.
M12	WiSe2024	MW 2	Praktikum: Epitheliale Transportvorgänge	Wissen/Kenntnisse	verstehen	die Wirkweise klinisch relevanter Inhibitoren (z. B. Amilorid, Furosemid), die
				(kognitiv)		den transepithelialen NaCl-Transport beeinflussen, erklären können.
M12	SoSe2025	MW 2	Praktikum: Epitheliale Transportvorgänge	Wissen/Kenntnisse	verstehen	die Wirkweise klinisch relevanter Inhibitoren (z. B. Amilorid, Furosemid), die
				(kognitiv)		den transepithelialen NaCl-Transport beeinflussen, erklären können.
M12	SoSe2024	MW 3	Seminar 3: Leber und Entgiftung	Wissen/Kenntnisse	verstehen	mögliche pharmakologische Folgen der CYP450 Enzym-Induktion und
				(kognitiv)		-Inhibition am Beispiel von CYP3A4 (durch Rifampicin oder Grapefruit) und
						CYP2D6 (auf den Tamoxifen- oder Codein-Metabolismus) darstellen können.

M12	WiSe2024	MW 3	Seminar 3: Leber und Entgiftung	Wissen/Kenntnisse	verstehen	mögliche pharmakologische Folgen der CYP450 Enzym-Induktion und
				(kognitiv)		-Inhibition am Beispiel von CYP3A4 (durch Rifampicin oder Grapefruit) und
						CYP2D6 (auf den Tamoxifen- oder Codein-Metabolismus) darstellen können.
M12	SoSe2025	MW 3	Seminar 3.3: Leber und Entgiftung	Wissen/Kenntnisse	verstehen	mögliche pharmakologische Folgen der CYP450 Enzym-Induktion und
				(kognitiv)		-Inhibition am Beispiel von CYP3A4 (durch Rifampicin oder Grapefruit) und
						CYP2D6 (auf den Tamoxifen- oder Codein-Metabolismus) darstellen können.
M13	WiSe2024	MW 2	Seminar 1: Allgemeine Pharmakologie obstruktiver	Wissen/Kenntnisse	analysieren	Pharmaka zur Therapie obstruktiver Ventilationsstörungen in ihre
			Ventilationsstörungen	(kognitiv)		Wirkstoffobergruppen einteilen und wichtige Substanzvertreter zuordnen
						können.
M13	WiSe2024	MW 2	Seminar 1: Allgemeine Pharmakologie obstruktiver	Wissen/Kenntnisse	verstehen	Indikationen, Wirkmechanismen, topische und systemische Wirkungen und
			Ventilationsstörungen	(kognitiv)		Nebenwirkungen sowie Kontraindikationen von bronchodilatatorisch/
						anti-inflammatorisch wirksamen Pharmaka erläutern können.
M13	SoSe2025	MW 2	Seminar 2.1: Allgemeine Pharmakologie	Wissen/Kenntnisse	analysieren	Pharmaka zur Therapie obstruktiver Ventilationsstörungen in ihre
			obstruktiver Ventilationsstörungen	(kognitiv)		Wirkstoffobergruppen einteilen und wichtige Substanzvertreter zuordnen
						können.
M13	SoSe2025	MW 2	Seminar 2.1: Allgemeine Pharmakologie	Wissen/Kenntnisse	verstehen	die klinisch-pharmakologischen Charakteristika der bei obstruktiven
			obstruktiver Ventilationsstörungen	(kognitiv)		Ventilationsstörungen eingesetzten Arzneistoffe erläutern können.
M14	WiSe2024	MW 2	Seminar 3: Diuretika: Physiologische Grundlagen	Wissen/Kenntnisse	verstehen	die Wirkungsmechanismen von klinisch eingesetzten Diuretika (Schleifen-,
			und Pharmakologische Beeinflussung der Niere	(kognitiv)		Thiazid-, und kalium-sparenden Diuretika) erklären können.
M14	WiSe2024	MW 2	Seminar 3: Diuretika: Physiologische Grundlagen	Wissen/Kenntnisse	analysieren	wesentliche Indikationen, Kontraindikationen und Nebenwirkungen von
			und Pharmakologische Beeinflussung der Niere	(kognitiv)		Schleifen-, Thiazid-, und kaliumsparenden Diuretika, insbesondere auf den
						Elektrolythaushalt, benennen und zuordnen können.
M14	SoSe2025	MW 2	Seminar 2.3: Diuretika: Physiologische Grundlagen	Wissen/Kenntnisse	verstehen	die Wirkungsmechanismen von klinisch eingesetzten Diuretika (Schleifen-,
			und Pharmakologische Beeinflussung der Niere	(kognitiv)		Thiazid-, und kalium-sparenden Diuretika) erklären können.
M14	SoSe2025	MW 2	Seminar 2.3: Diuretika: Physiologische Grundlagen	Wissen/Kenntnisse	analysieren	wesentliche Indikationen, Kontraindikationen und Nebenwirkungen von
			und Pharmakologische Beeinflussung der Niere	(kognitiv)		Schleifen-, Thiazid-, und kaliumsparenden Diuretika, insbesondere auf den
						Elektrolythaushalt, benennen und zuordnen können.
M14	WiSe2024	MW 4	Seminar 2: Pharmakokinetik und Niere	Wissen/Kenntnisse	verstehen	die wesentlichen Vorgänge mit Einfluss auf die Pharmakokinetik von
				(kognitiv)		Arzneimitteln sowie die klinisch relevanten Kenngrößen der
						Plasmakonzentrationszeitkurve erklären können.
M14	WiSe2024	MW 4	Seminar 2: Pharmakokinetik und Niere	Wissen/Kenntnisse	verstehen	die Grundlagen nephrotoxischer Wirkungen von Arzneimitteln am Beispiel der
				(kognitiv)		Aminoglykosid-Antibiotika erläutern können.
M14	SoSe2025	MW 4	Seminar 4.2: Pharmakokinetik und Niere	Wissen/Kenntnisse	verstehen	die wesentlichen Vorgänge mit Einfluss auf die Pharmakokinetik von
				(kognitiv)		Arzneimitteln sowie die klinisch relevanten Kenngrößen der
						Plasmakonzentrationszeitkurve erklären können.

M15	WiSe2024	MW 3	Seminar 1: Synthese-, Speicherungs- und	Wissen/Kenntnisse	verstehen	den enzymatischen Abbau, die Signaltransduktion oder die Wiederaufnahme
			Abbauwege von Katecholaminen und Serotonin -	(kognitiv)		der Katecholamine als pharmakologische/ therapeutische Ansatzpunkte zur
			Angriffspunkte für die Pharmakotherapie beim	, ,		Therapie des Idiopathischen Parkinsonsyndroms (DOPA-Decarboxylase-,
			idiopathischen Parkinson-Syndrom			COMT-, MAO-, und Wiederaufnahme- Inhibitoren,
						Dopamin-Rezeptor-Agonisten, Anticholinergika und Amantadin) beschreiben
						können.
M15	WiSe2024	MW 3	Seminar 1: Synthese-, Speicherungs- und	Wissen/Kenntnisse	verstehen	in Grundzügen unerwünschte Arzneimittelwirkungen durch die
			Abbauwege von Katecholaminen und Serotonin -	(kognitiv)		Pharmakokinetik / -dynamik von DOPA-Decarboxylase-, COMT-, MAO-, und
			Angriffspunkte für die Pharmakotherapie beim			Wiederaufnahme- Inhibitoren, Dopamin-Rezeptor-Agonisten, Anticholinergika
			idiopathischen Parkinson-Syndrom			und Amantadin exemplarisch beschreiben können.
M15	SoSe2025	MW 3	Seminar 3.1: Synthese-, Speicherungs- und	Wissen/Kenntnisse	verstehen	den enzymatischen Abbau, die Signaltransduktion oder die Wiederaufnahme
			Abbauwege von Katecholaminen und Serotonin -	(kognitiv)		der Katecholamine als pharmakologische / therapeutische Ansatzpunkte zur
			Angriffspunkte für die Pharmakotherapie beim			Therapie des Idiopathischen Parkinsonsyndroms (DOPA-Decarboxylase-,
			idiopathischen Parkinson-Syndrom			COMT-, MAO-, und Wiederaufnahme-Inhibitoren,
						Dopamin-Rezeptor-Agonisten, Anticholinergika und Amantadin) beschreiben
						können.
M15	SoSe2025	MW 3	Seminar 3.1: Synthese-, Speicherungs- und	Wissen/Kenntnisse	verstehen	in Grundzügen unerwünschte Arzneimittelwirkungen durch die
			Abbauwege von Katecholaminen und Serotonin -	(kognitiv)		Pharmakokinetik / -dynamik von DOPA-Decarboxylase-, COMT-, MAO-, und
			Angriffspunkte für die Pharmakotherapie beim			Wiederaufnahme- Inhibitoren, Dopamin-Rezeptor-Agonisten, Anticholinergika
			idiopathischen Parkinson-Syndrom			und Amantadin exemplarisch beschreiben können.
M16	WiSe2024	MW 1	Patientenvorstellung: Patient*in mit Grünem Star	Wissen/Kenntnisse	analysieren	Ansätze und Möglichkeiten der pharmakologischen Regulation der
				(kognitiv)		Kammerwassersekretion und -zirkulation in Grundzügen herleiten können.
M16	SoSe2025	MW 1	Patientenvorstellung: Patient*in mit Grünem Star	Wissen/Kenntnisse	analysieren	Ansätze und Möglichkeiten der pharmakologischen Regulation der
				(kognitiv)		Kammerwassersekretion und -zirkulation in Grundzügen herleiten können.
M18	WiSe2024	Prolog/ Epilog	Vorlesung Prolog: Antiinfektiva zur Behandlung von	Wissen/Kenntnisse	verstehen	klinisch-pharmakologische Eigenschaften häufig eingesetzter
			Infektionen durch Bakterien, Pilze und Viren	(kognitiv)		Antibiotikaklassen darlegen können.
M18	SoSe2025	Prolog/ Epilog	Vorlesung Prolog: Antiinfektiva zur Behandlung von	Wissen/Kenntnisse	verstehen	klinisch-pharmakologische Eigenschaften häufig eingesetzter
			Infektionen durch Bakterien, Pilze und Viren	(kognitiv)		Antibiotikaklassen darlegen können.
M18	WiSe2024	MW 1	Seminar 3: Pharmakologie ausgewählter	Wissen/Kenntnisse	erinnern	Wirkstoffklassen der antibakteriell wirksamen Antiinfektiva, die im ambulanten
			Antiinfektiva am Beispiel der Differenzialtherapie	(kognitiv)		und stationären Bereich zur Behandlung der ambulant erworbenen
			der ambulant erworbenen Pneumonie			Pneumonie häufig angewendet werden, und wichtige Vertreter dieser
						Wirkstoffgruppen benennen können.
M18	WiSe2024	MW 1	Seminar 3: Pharmakologie ausgewählter	Wissen/Kenntnisse	verstehen	klinisch-pharmakologische Eigenschaften der zur Behandlung der ambulant
			Antiinfektiva am Beispiel der Differenzialtherapie	(kognitiv)		erworbenen Pneumonie häufig eingesetzten Antiinfektiva beschreiben
			der ambulant erworbenen Pneumonie			können.

M18	SoSe2025	MW 1	Seminar 3: Pharmakologie ausgewählter	Wissen/Kenntnisse	erinnern	Wirkstoffklassen der antibakteriell wirksamen Antiinfektiva, die im ambulanten
			Antiinfektiva am Beispiel der Differenzialtherapie	(kognitiv)		und stationären Bereich zur Behandlung der ambulant erworbenen
			der ambulant erworbenen Pneumonie			Pneumonie häufig angewendet werden, und wichtige Vertreter dieser
						Wirkstoffgruppen benennen können.
M18	SoSe2025	MW 1	Seminar 3: Pharmakologie ausgewählter	Wissen/Kenntnisse	verstehen	klinisch-pharmakologische Eigenschaften der zur Behandlung der ambulant
			Antiinfektiva am Beispiel der Differenzialtherapie	(kognitiv)		erworbenen Pneumonie häufig eingesetzten Antiinfektiva beschreiben
			der ambulant erworbenen Pneumonie			können.
M19	WiSe2024	Prolog/ Epilog	Vorlesung Prolog: Einführung in die Pharmakologie	Wissen/Kenntnisse	verstehen	grundlegende Wirkmechanismen, Grundzüge der klinischen Anwendung und
			von Tumorerkrankungen	(kognitiv)		Nebenwirkungen von gezielten Tumortherapeutika (monoklonale Antikörper,
						Tyrosinkinase-Hemmer, Serin/Threonin-Kinase-Inhibitoren,
						Hormonantagonisten) beschreiben können.
M19	SoSe2025	Prolog/ Epilog	Vorlesung Prolog: Einführung in die Pharmakologie	Wissen/Kenntnisse	verstehen	grundlegende Wirkmechanismen, Grundzüge der klinischen Anwendung und
			von Tumorerkrankungen	(kognitiv)		Nebenwirkungen von gezielten Tumortherapeutika (monoklonale Antikörper,
						Tyrosinkinase-Hemmer, Serin/Threonin-Kinase-Inhibitoren,
						Hormonantagonisten) beschreiben können.
M19	WiSe2024	MW 3	Seminar 6: Medikamentöse Tumortherapie	Wissen/Kenntnisse	verstehen	die grundlegenden Wirkmechanismen, die Grundzüge der klinischen
				(kognitiv)		Anwendung und häufige Nebenwirkungen von klassischen Tumortherapeutika
						beschreiben können.
M19	SoSe2025	MW 3	Seminar 6: Medikamentöse Tumortherapie	Wissen/Kenntnisse	verstehen	die grundlegenden Wirkmechanismen, die Grundzüge der klinischen
				(kognitiv)		Anwendung und häufige Nebenwirkungen von klassischen Tumortherapeutika
						beschreiben können.
M20	WiSe2024	Prolog/ Epilog	Vorlesung Epilog: Placebo/Nocebo	Wissen/Kenntnisse	analysieren	'Placebo' und 'Nocebo' definieren und an jeweils einem Beispiel zuordnen
				(kognitiv)		können.
M20	SoSe2025	Prolog/ Epilog	Vorlesung Epilog: Placebo/Nocebo	Wissen/Kenntnisse	analysieren	'Placebo' und 'Nocebo' definieren und an jeweils einem Beispiel zuordnen
				(kognitiv)		können.
M20	WiSe2024	MW 1	Seminar 1: Analgetika	Wissen/Kenntnisse	verstehen	Indikationen und Kontraindikationen der medikamentösen Schmerztherapie
				(kognitiv)		bezogen auf die pathophysiologische Schmerzgenese beschreiben können.
M20	WiSe2024	MW 1	Seminar 1: Analgetika	Wissen/Kenntnisse	analysieren	die Substanzklassen Opioid- und Nichtopioid-Analgetika aufgrund ihrer
				(kognitiv)		verschiedenen Wirkmechanismen und Verteilung/ Metabolisierung
						unterscheiden können.
M20	SoSe2025	MW 1	Seminar 1: Analgetika	Wissen/Kenntnisse	verstehen	Indikationen und Kontraindikationen der medikamentösen Schmerztherapie
				(kognitiv)		bezogen auf die pathophysiologische Schmerzgenese beschreiben können.
M20	WiSe2024	MW 3	Seminar 6: Pharmakotherapie der Depression	Wissen/Kenntnisse	analysieren	Antidepressiva in ihre Wirkstoffobergruppen einteilen und wichtige
				(kognitiv)		Substanzvertreter benennen können.

M20	SoSe2025	MW 3	Seminar 6: Pharmakotherapie der Depression	Wissen/Kenntnisse	analysieren	Antidepressiva in ihre Wirkstoffobergruppen einteilen und wichtige
				(kognitiv)		Substanzvertreter benennen können.
M21	WiSe2024	MW 2	Seminar 6: Medikamentöse und	Wissen/Kenntnisse	verstehen	allgemeine Prinzipien der kreislaufstabilisierenden, medikamentösen Therapie
			nicht-medikamentöse Therapie des Schocks	(kognitiv)		des Schocks erläutern können (Katecholamine, Dopamin, Dobutamin).
M21	SoSe2025	MW 2	Seminar 6: Medikamentöse und	Wissen/Kenntnisse	verstehen	allgemeine Prinzipien der kreislaufstabilisierenden, medikamentösen Therapie
			nicht-medikamentöse Therapie des Schocks	(kognitiv)		des Schocks erläutern können (Katecholamine, Dopamin, Dobutamin).
M22	WiSe2024	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	erinnern	typische pharmakologisch-toxikologische Interventionen, die
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Sexualsteroidhormonwirkungen beeinflussen können, benennen können.
M22	WiSe2024	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	verstehen	am Beispiel von Diethylstilbestrol (DES) erklären können wie synthetische
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Substanzen die Funktion von Sexualsteroiden und/ oder ihren Rezeptoren auf
						molekularpharmakologisch/ -toxikologischer Ebene beeinflussen.
M22	WiSe2024	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	verstehen	das pharmakologische Prinzip der "selektiven nukleären
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Hormonrezeptormodulation" erläutern können.
M22	SoSe2025	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	erinnern	typische pharmakologisch-toxikologische Interventionen, die
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Sexualsteroidhormonwirkungen beeinflussen können, benennen können.
M22	SoSe2025	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	verstehen	am Beispiel von Diethylstilbestrol (DES) erklären können wie synthetische
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Substanzen die Funktion von Sexualsteroiden und/ oder ihren Rezeptoren auf
						molekularpharmakologisch/ -toxikologischer Ebene beeinflussen.
M22	SoSe2025	Epilog	Vorlesung Epilog: Sexualhormonrezeptoren als	Wissen/Kenntnisse	verstehen	das pharmakologische Prinzip der "selektiven nukleären
			pharmakologisch-toxikologische Zielmoleküle	(kognitiv)		Hormonrezeptormodulation" erläutern können.
M25	WiSe2023	Prolog/Epilog	Vorlesung Prolog: Management der arteriellen	Wissen/Kenntnisse	analysieren	die typische medikamentöse Start- und Stufentherapie der arteriellen
			Hypertonie	(kognitiv)		Hypertonie beschreiben und unerwünschte Arzneimittelwirkungen sowie
						Kontraindikationen von ACE-Hemmern, AT1-Antagonisten, Betablockern,
						Calciumantagonisten und Diuretika zuordnen können.
M25	SoSe2024	Prolog/Epilog	Vorlesung Prolog: Management der arteriellen	Wissen/Kenntnisse	analysieren	die typische medikamentöse Start- und Stufentherapie der arteriellen
			Hypertonie	(kognitiv)		Hypertonie beschreiben und unerwünschte Arzneimittelwirkungen sowie
						Kontraindikationen von ACE-Hemmern, AT1-Antagonisten, Betablockern,
						Calciumantagonisten und Diuretika zuordnen können.
M25	WiSe2024	Prolog/Epilog	Vorlesung Prolog: Management der arteriellen	Wissen/Kenntnisse	analysieren	die typische medikamentöse Start- und Stufentherapie der arteriellen
			Hypertonie	(kognitiv)		Hypertonie beschreiben und unerwünschte Arzneimittelwirkungen sowie
						Kontraindikationen von ACE-Hemmern, AT1-Antagonisten, Betablockern,
						Calciumantagonisten und Diuretika zuordnen können.

M25	SoSe2025	Prolog/Epilog	Vorlesung Prolog: Management der arteriellen	Wissen/Kenntnisse	analysieren	die typische medikamentöse Start- und Stufentherapie der arteriellen
			Hypertonie	(kognitiv)		Hypertonie beschreiben und die klinisch-pharmakologischen Eigenschaften
						von ACE-Hemmern, AT1-Antagonisten, Betablockern, Calciumantagonisten
						und Diuretika zuordnen können.
M25	WiSe2023	MW 1	eVorlesung: Asthma bronchiale	Wissen/Kenntnisse	verstehen	die Biosynthese, die biologischen Wirkmechanismen und den Abbau wichtiger
				(kognitiv)		Asthmamediatoren (Leukotriene) und damit auch die molekulare Wirkung von
						antiasthmatisch wirkenden Medikamenten (Leukotrienrezeptorantagonisten,
						Glucocorticoide) erläutern können.
M25	SoSe2024	MW 1	eVorlesung: Asthma bronchiale	Wissen/Kenntnisse	verstehen	die Biosynthese, die biologischen Wirkmechanismen und den Abbau wichtiger
				(kognitiv)		Asthmamediatoren (Leukotriene) und damit auch die molekulare Wirkung von
						antiasthmatisch wirkenden Medikamenten (Leukotrienrezeptorantagonisten,
						Glucocorticoide) erläutern können.
M25	WiSe2024	MW 1	eVorlesung: Asthma bronchiale	Wissen/Kenntnisse	verstehen	die Biosynthese, die biologischen Wirkmechanismen und den Abbau wichtiger
				(kognitiv)		Asthmamediatoren (Leukotriene) und damit auch die molekulare Wirkung von
						antiasthmatisch wirkenden Medikamenten (Leukotrienrezeptorantagonisten,
						Glucocorticoide) erläutern können.
M25	SoSe2025	MW 1	eVorlesung: Asthma bronchiale	Wissen/Kenntnisse	verstehen	die Biosynthese, die biologischen Wirkmechanismen und den Abbau wichtiger
				(kognitiv)		Asthmamediatoren (Leukotriene) und damit auch die molekulare Wirkung von
						antiasthmatisch wirkenden Medikamenten (Leukotrienrezeptorantagonisten,
						Glucocorticoide) erläutern können.
M25	WiSe2023	MW 2	Seminar 2: Pathomechanismen, Diagnostik und	Wissen/Kenntnisse	analysieren	basierend auf der Pathophysiologie der Herzinsuffizienz medikamentöse
			Therapie der Herzinsuffizienz	(kognitiv)		Therapieansätze im Sinne der Basis- und weiterführenden Stufentherapie
						herleiten können.
M25	SoSe2024	MW 2	Seminar 2: Pathomechanismen, Diagnostik und	Wissen/Kenntnisse	analysieren	basierend auf der Pathophysiologie der Herzinsuffizienz medikamentöse
			Therapie der Herzinsuffizienz	(kognitiv)		Therapieansätze im Sinne der Basis- und weiterführenden Stufentherapie
						herleiten können.
M25	WiSe2024	MW 2	Seminar 2: Pathomechanismen, Diagnostik und	Wissen/Kenntnisse	analysieren	basierend auf der Pathophysiologie der Herzinsuffizienz medikamentöse
			Therapie der Herzinsuffizienz	(kognitiv)		Therapieansätze im Sinne der Basis- und weiterführenden Stufentherapie
						herleiten können.
M25	SoSe2025	MW 2	Seminar 2: Pathomechanismen, Diagnostik und	Wissen/Kenntnisse	analysieren	basierend auf der Pathophysiologie der Herzinsuffizienz medikamentöse
			Therapie der Herzinsuffizienz	(kognitiv)		Therapieansätze im Sinne der Basis- und weiterführenden Stufentherapie
						herleiten können.
M30	SoSe2024	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im Zusammenhang
			Blasenentleerungsstörungen	(kognitiv)		mit der Innervation der Harnblase beschreiben können.

M30	WiSe2024	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im Zusammenhang
			Blasenentleerungsstörungen	(kognitiv)		mit der Innervation der Harnblase beschreiben können.
M30	SoSe2025	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im Zusammenhang
			Blasenentleerungsstörungen	(kognitiv)		mit der Innervation der Harnblase beschreiben können.
M30	SoSe2024	MW 3	eVorlesung: Leitsymptom: hyperkinetische	Wissen/Kenntnisse	erinnern	hyperkinetische Bewegungsstörungen als unerwünschte Arzneimittelwirkung
			Bewegungsstörung	(kognitiv)		von (nor-)adrenergen Substanzen, serotonergen Substanzen
						Dopaminantagonisten, Dopamin-Agonisten, Schilddrüsenhormonen, Opiaten,
						Lithium, Phenytoin, Valproinsäure und Lamotrigin benennen können.
M30	WiSe2024	MW 3	eVorlesung: Leitsymptom: hyperkinetische	Wissen/Kenntnisse	erinnern	hyperkinetische Bewegungsstörungen als unerwünschte Arzneimittelwirkung
			Bewegungsstörung	(kognitiv)		von (nor-)adrenergen Substanzen, serotonergen Substanzen
						Dopaminantagonisten, Dopamin-Agonisten, Schilddrüsenhormonen, Opiaten,
						Lithium, Phenytoin, Valproinsäure und Lamotrigin benennen können.
M30	SoSe2025	MW 3	eVorlesung: Leitsymptom: hyperkinetische	Wissen/Kenntnisse	erinnern	hyperkinetische Bewegungsstörungen als unerwünschte Arzneimittelwirkung
			Bewegungsstörung	(kognitiv)		von (nor-)adrenergen Substanzen, serotonergen Substanzen
						Dopaminantagonisten, Dopamin-Agonisten, Schilddrüsenhormonen, Opiaten,
						Lithium, Phenytoin, Valproinsäure und Lamotrigin benennen können.