Aktive Filter: AZ-Feingliederung: Wege der Kommunikation zwischen Zellen, Geweben und Organen

Modul	akad.	Woche	Veranstaltung: Titel	LZ-Dimension	LZ-Kognitions-	Lernziel
	Periode				dimension	
M04	SoSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	verstehen	die wesentlichen Determinanten der Leitungsgeschwindigkeit von
			elektrischer Signalausbreitung	(kognitiv)		Aktionspotentialen erläutern können.
M04	SoSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	die Klassifizierungen von Axonen im peripheren Nervensystem (inkl.
			elektrischer Signalausbreitung	(kognitiv)		Gesamtdurchmesser bzw. Myelinisierungsdicke) und deren
						Leitungsgeschwindigkeiten wiedergeben und mit den entsprechenden
						Größenordnungen bei zentralen Axonen und bei Muskelfasern
						vergleichen können.
M04	SoSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(kognitiv)		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm der
						aktiven und passiven Signalausbreitung zuordnen können.
M04	SoSe2024	MW 1	Seminar 2: Varianten und Determinanten	Fertigkeiten	anwenden	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(psychomotorisch,		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm auftragen
				praktische Fertigkeiten		und daraus die mittlere Ausbreitungsgeschwindigkeit bestimmen
				gem. PO)		können.
M04	WiSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	verstehen	die wesentlichen Determinanten der Leitungsgeschwindigkeit von
			elektrischer Signalausbreitung	(kognitiv)		Aktionspotentialen erläutern können.
M04	WiSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	die Klassifizierungen von Axonen im peripheren Nervensystem (inkl.
			elektrischer Signalausbreitung	(kognitiv)		Gesamtdurchmesser bzw. Myelinisierungsdicke) und deren
						Leitungsgeschwindigkeiten wiedergeben und mit den entsprechenden
						Größenordnungen bei zentralen Axonen und bei Muskelfasern
						vergleichen können.
M04	WiSe2024	MW 1	Seminar 2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(kognitiv)		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm der
						aktiven und passiven Signalausbreitung zuordnen können.
M04	WiSe2024	MW 1	Seminar 2: Varianten und Determinanten	Fertigkeiten	anwenden	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(psychomotorisch,		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm auftragen
				praktische Fertigkeiten		und daraus die mittlere Ausbreitungsgeschwindigkeit bestimmen
				gem. PO)		können.
M04	SoSe2025	MW 1	Seminar 1.2: Varianten und Determinanten	Wissen/Kenntnisse	verstehen	die wesentlichen Determinanten der Leitungsgeschwindigkeit von
			elektrischer Signalausbreitung	(kognitiv)		Aktionspotentialen erläutern können.

M04	SoSe2025	MW 1	Seminar 1.2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	die Klassifizierungen von Axonen im peripheren Nervensystem (inkl.
			elektrischer Signalausbreitung	(kognitiv)		Gesamtdurchmesser bzw. Myelinisierungsdicke) und deren
						Leitungsgeschwindigkeiten wiedergeben und mit den entsprechenden
						Größenordnungen bei zentralen Axonen und bei Muskelfasern
						vergleichen können.
M04	SoSe2025	MW 1	Seminar 1.2: Varianten und Determinanten	Wissen/Kenntnisse	analysieren	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(kognitiv)		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm der
						aktiven und passiven Signalausbreitung zuordnen können.
M04	SoSe2025	MW 1	Seminar 1.2: Varianten und Determinanten	Fertigkeiten	anwenden	den Verlauf der Potentialausbreitung in einem myelinisierten Axon und in
			elektrischer Signalausbreitung	(psychomotorisch,		einem nicht-myelinisierten Axon in einem Weg-Zeit-Diagramm auftragen
				praktische Fertigkeiten		und daraus die mittlere Ausbreitungsgeschwindigkeit bestimmen
				gem. PO)		können.
M04	SoSe2024	MW 1	Untersuchungskurs: Patientenuntersuchung:	Mini-PA (praktische	anwenden	bei einem gegebenen Patienten, einer gegebenen Patientin die
			Schwerpunkt Kopf/Hals	Fertigkeiten gem. PO)		Pupillen-Reaktionen untersuchen, den Befund dokumentieren und
						hinsichtlich eines Normalbefunds einordnen können.
M04	WiSe2024	MW 1	Untersuchungskurs: Patientenuntersuchung:	Mini-PA (praktische	anwenden	bei einem gegebenen Patienten, einer gegebenen Patientin die
			Schwerpunkt Kopf/Hals	Fertigkeiten gem. PO)		Pupillen-Reaktionen untersuchen, den Befund dokumentieren und
						hinsichtlich eines Normalbefunds einordnen können.
M04	SoSe2025	MW 1	Untersuchungskurs: Patientenuntersuchung:	Mini-PA (praktische	anwenden	bei gegebenen Patient*innen die Pupillen-Reaktionen untersuchen, den
			Schwerpunkt Kopf/Hals	Fertigkeiten gem. PO)		Befund dokumentieren und hinsichtlich eines Normalbefunds einordnen
						können.
M04	SoSe2024	MW 2	Vorlesung: Erregungsleitung im Herzen und deren	Wissen/Kenntnisse	verstehen	die Strukturen des Erregungsbildungs- und Leitungssystems des
			Störungen	(kognitiv)		Herzens beschreiben können.
M04	WiSe2024	MW 2	Vorlesung: Erregungsleitung im Herzen und deren	Wissen/Kenntnisse	verstehen	die Strukturen des Erregungsbildungs- und Leitungssystems des
			Störungen	(kognitiv)		Herzens beschreiben können.
M04	SoSe2025	MW 2	Vorlesung: Erregungsleitung im Herzen und deren	Wissen/Kenntnisse	verstehen	die Strukturen des Erregungsbildungs- und Leitungssystems des
			Störungen	(kognitiv)		Herzens beschreiben können.
M04	SoSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	analysieren	die verschiedenen Formen der Zell-Zell-Kommunikation
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		(kontaktabhängig, parakrin, synaptisch, endokrin) benennen und
			Zellverhalten			folgende Botenstoffe (Ionen, SHH, GABA, Testosteron) der
						entsprechenden Zell-Zell-Kommunikationsform zuordnen können.
M04	SoSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	den Aufbau und die Funktion von gap junction (Nexus) erläutern können.
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		
			Zellverhalten			

M04	SoSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	beispielhaft darstellen können, welche Wirkungen Signalgradienten auf
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		eine Zelle haben (Chemokinese versus Chemotaxis, Polarisation,
			Zellverhalten			koordinierte Differenzierung).
M04	WiSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	analysieren	die verschiedenen Formen der Zell-Zell-Kommunikation
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		(kontaktabhängig, parakrin, synaptisch, endokrin) benennen und
			Zellverhalten			folgende Botenstoffe (Ionen, SHH, GABA, Testosteron) der
						entsprechenden Zell-Zell-Kommunikationsform zuordnen können.
M04	WiSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	den Aufbau und die Funktion von gap junction (Nexus) erläutern können.
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		
			Zellverhalten			
M04	WiSe2024	MW 2	Seminar 4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	beispielhaft darstellen können, welche Wirkungen Signalgradienten auf
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		eine Zelle haben (Chemokinese versus Chemotaxis, Polarisation,
			Zellverhalten			koordinierte Differenzierung).
M04	SoSe2025	MW 2	Seminar 2.4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	analysieren	die verschiedenen Formen der Zell-Zell-Kommunikation
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		(kontaktabhängig, parakrin, synaptisch, endokrin) benennen und
			Zellverhalten			folgende Botenstoffe (Ionen, SHH, GABA, Testosteron) der
						entsprechenden Zell-Zell-Kommunikationsform zuordnen können.
M04	SoSe2025	MW 2	Seminar 2.4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	den Aufbau und die Funktion von gap junction (Nexus) erläutern können.
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		
			Zellverhalten			
M04	SoSe2025	MW 2	Seminar 2.4: Zell-Zell-Kommunikation,	Wissen/Kenntnisse	verstehen	beispielhaft darstellen können, welche Wirkungen Signalgradienten auf
			Zell-Substrat-Interaktion und ihr Einfluss auf das	(kognitiv)		eine Zelle haben (Chemokinese versus Chemotaxis, Polarisation,
			Zellverhalten			koordinierte Differenzierung).
M04	SoSe2024	MW 3	Vorlesung: Synthese, Freisetzung von	Wissen/Kenntnisse	verstehen	Stimulationsprinzipien für die Ausschüttung von Botenstoffen
			Mediatoren/Hormonen	(kognitiv)		beschreiben können (endokrin, humoral und neuronal).
M04	WiSe2024	MW 3	Vorlesung: Synthese, Freisetzung von	Wissen/Kenntnisse	verstehen	Stimulationsprinzipien für die Ausschüttung von Botenstoffen
			Mediatoren/Hormonen	(kognitiv)		beschreiben können (endokrin, humoral und neuronal).
M04	SoSe2025	MW 3	Vorlesung: Synthese, Freisetzung von	Wissen/Kenntnisse	verstehen	Stimulationsprinzipien für die Ausschüttung von Botenstoffen
			Mediatoren/Hormonen	(kognitiv)		beschreiben können (endokrin, humoral und neuronal).
M04	SoSe2024	MW 3	Vorlesung: Die Hypothalamus - Hypophysen -	Wissen/Kenntnisse	verstehen	die hierarchische Organisation einer endokrinen Achse am Beispiel der
			Nebennierenrinden - Achse	(kognitiv)		CRH-ACTH-Cortisol-Achse darstellen und deren Steuerung und
						Rückkopplung erklären können.
M04	WiSe2024	MW 3	Vorlesung: Die Hypothalamus - Hypophysen -	Wissen/Kenntnisse	verstehen	die hierarchische Organisation einer endokrinen Achse am Beispiel der
			Nebennierenrinden - Achse	(kognitiv)		CRH-ACTH-Cortisol-Achse darstellen und deren Steuerung und
						Rückkopplung erklären können.

M04	SoSe2025	MW 3	Vorlesung: Die Hypothalamus - Hypophysen -	Wissen/Kenntnisse	verstehen	die hierarchische Organisation einer endokrinen Achse am Beispiel der
			Nebennierenrinden - Achse	(kognitiv)		CRH-ACTH-Cortisol-Achse darstellen und deren Steuerung und
						Rückkopplung erklären können.
M04	SoSe2024	MW 3	Seminar 1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	analysieren	die Mechanismen der intrazellulären Wirkung von Thyrotropin (TSH) und
			von Mediatoren / Hormonen	(kognitiv)		die von Trijodthyronin (T3) an/in ihren jeweiligen Zielzellen
						unterscheiden können.
M04	SoSe2024	MW 3	Seminar 1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	verstehen	den Transport und die Umwandlung von Hormonformen am Beispiel von
			von Mediatoren / Hormonen	(kognitiv)		Thyroxin (T4) und Trijodthyronin (T3) erklären können.
M04	WiSe2024	MW 3	Seminar 1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	analysieren	die Mechanismen der intrazellulären Wirkung von Thyrotropin (TSH) und
			von Mediatoren / Hormonen	(kognitiv)		die von Trijodthyronin (T3) an/in ihren jeweiligen Zielzellen
						unterscheiden können.
M04	WiSe2024	MW 3	Seminar 1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	verstehen	den Transport und die Umwandlung von Hormonformen am Beispiel von
			von Mediatoren / Hormonen	(kognitiv)		Thyroxin (T4) und Trijodthyronin (T3) erklären können.
M04	SoSe2025	MW 3	Seminar 3.1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	analysieren	die Mechanismen der intrazellulären Wirkung von Thyrotropin (TSH) und
			von Mediatoren / Hormonen	(kognitiv)		die von Trijodthyronin (T3) an/in ihren jeweiligen Zielzellen
						unterscheiden können.
M04	SoSe2025	MW 3	Seminar 3.1: Zelluläre Wirkungsweise und Abbau	Wissen/Kenntnisse	verstehen	den Transport und die Umwandlung von Hormonformen am Beispiel von
			von Mediatoren / Hormonen	(kognitiv)		Thyroxin (T4) und Trijodthyronin (T3) erklären können.
M04	SoSe2024	MW 3	Praktikum: Elektronenmikroskopie der	Wissen/Kenntnisse	verstehen	die Mechanismen und die Bedeutung der Verankerung von
			Zell-Zell-Kontakte	(kognitiv)		Zell-Zell-Junktionen mit Komponenten des Zytoskeletts beschreiben
						können.
M04	WiSe2024	MW 3	Praktikum: Elektronenmikroskopie der	Wissen/Kenntnisse	verstehen	die Mechanismen und die Bedeutung der Verankerung von
			Zell-Zell-Kontakte	(kognitiv)		Zell-Zell-Junktionen mit Komponenten des Zytoskeletts beschreiben
						können.
M04	SoSe2025	MW 3	Praktikum: Elektronenmikroskopie der	Wissen/Kenntnisse	verstehen	die Mechanismen und die Bedeutung der Verankerung von
			Zell-Zell-Kontakte	(kognitiv)		Zell-Zell-Junktionen mit Komponenten des Zytoskeletts beschreiben
						können.
M05	WiSe2024	MW 3	Seminar 3: Physiologische und	Wissen/Kenntnisse	analysieren	am Beispiel der Brustdrüse die Bedeutung von Hormonrezeptoren und
			pathophysiologische Umbauvorgänge in der	(kognitiv)		Onkogenen (HER-2neu) einordnen können – auch als Grundlage für
			Mamma: Was ist ein Knoten in der Brust?			neue therapeutische Ansätze.
M05	SoSe2025	MW 3	Seminar 3.3: Physiologische und	Wissen/Kenntnisse	analysieren	am Beispiel der Brustdrüse die Bedeutung von Hormonrezeptoren und
			pathophysiologische Umbauvorgänge in der	(kognitiv)		Onkogenen (HER-2neu) einordnen können – auch als Grundlage für
			Mamma: Was ist ein Knoten in der Brust?			neue therapeutische Ansätze.

M05	WiSe2024	MW 4	Vorlesung: Molekulare Grundlagen der	Wissen/Kenntnisse	verstehen	die Grundprozesse der Morphogenese (epitheliale-mesenchymale
			Morphogenese	(kognitiv)		Transition (EMT), Zellkommunikation, Zellproliferation, Zellmigration,
						Zellinvasion, Zelldifferenzierung, Apoptose) nennen und erläutern
						können.
M05	SoSe2025	MW 4	Vorlesung: Molekulare Grundlagen der	Wissen/Kenntnisse	verstehen	die Grundprozesse der Morphogenese (epitheliale-mesenchymale
			Morphogenese	(kognitiv)		Transition (EMT), Zellkommunikation, Zellproliferation, Zellmigration,
						Zellinvasion, Zelldifferenzierung, Apoptose) nennen und erläutern
						können.
M09	SoSe2024	MW 1	Seminar 2: Knallrot oder kreidebleich?	Wissen/Kenntnisse	verstehen	nervale (inklusive beteiligte Transmitter) und lokale
				(kognitiv)		Regulationsmechanismen und ihre Bedeutung für die Regulation der
						Hautdurchblutung beschreiben können.
M09	WiSe2024	MW 1	Seminar 2: Knallrot oder kreidebleich?	Wissen/Kenntnisse	verstehen	nervale (inklusive beteiligte Transmitter) und lokale
				(kognitiv)		Regulationsmechanismen und ihre Bedeutung für die Regulation der
						Hautdurchblutung beschreiben können.
M09	SoSe2025	MW 1	Seminar 1.2: Knallrot oder kreidebleich?	Wissen/Kenntnisse	verstehen	nervale (inklusive beteiligte Transmitter) und lokale
				(kognitiv)		Regulationsmechanismen und ihre Bedeutung für die Regulation der
						Hautdurchblutung beschreiben können.
M09	SoSe2024	MW 4	Seminar 1: Molekulare Mechanismen der	Wissen/Kenntnisse	verstehen	die Funktion von Langerhans-Zellen als professionell
			dermalen Abwehr	(kognitiv)		antigenpräsentierende Zellen erklären können.
M09	WiSe2024	MW 4	Seminar 1: Molekulare Mechanismen der	Wissen/Kenntnisse	verstehen	die Funktion von Langerhans-Zellen als professionell
			dermalen Abwehr	(kognitiv)		antigenpräsentierende Zellen erklären können.
M09	SoSe2025	MW 4	Seminar 4.1: Molekulare Mechanismen der	Wissen/Kenntnisse	verstehen	die Funktion von Langerhans-Zellen als professionell
			dermalen Abwehr	(kognitiv)		antigenpräsentierende Zellen erklären können.
M10	SoSe2024	MW 1	Seminar 1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Rolle von Osteoblasten, Hormonen und Zytokinen bei der Regulation
			Knochenstoffwechsels	(kognitiv)		des Knochenstoffwechsels erklären können.
M10	SoSe2024	MW 1	Seminar 1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Abhängigkeit des Knochenumbaus vom Kalziumhaushalt darlegen
			Knochenstoffwechsels	(kognitiv)		können.
M10	WiSe2024	MW 1	Seminar 1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Rolle von Osteoblasten, Hormonen und Zytokinen bei der Regulation
			Knochenstoffwechsels	(kognitiv)		des Knochenstoffwechsels erklären können.
M10	WiSe2024	MW 1	Seminar 1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Abhängigkeit des Knochenumbaus vom Kalziumhaushalt darlegen
			Knochenstoffwechsels	(kognitiv)		können.
M10	SoSe2025	MW 1	Seminar 1.1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Rolle von Osteoblasten, Hormonen und Zytokinen bei der Regulation
			Knochenstoffwechsels	(kognitiv)		des Knochenstoffwechsels erklären können.
M10	SoSe2025	MW 1	Seminar 1.1: Besonderheiten des	Wissen/Kenntnisse	verstehen	die Abhängigkeit des Knochenumbaus vom Kalziumhaushalt darlegen
			Knochenstoffwechsels	(kognitiv)		können.

1440	0.0.004	1,044.0	0 : 4 14 1 1 1 4 6 00 00	140	1	D
M10	SoSe2024	MW 2	Seminar 1: Molekulare Ursachen für Störungen im		verstehen	am Beispiel ausgewählter Erkrankungen (primärer und sekundärer
			Knochenstoffwechsel	(kognitiv)		Hyperparathyreoidismus, familiäre hypokalzurische Hyperkalzämie,
						Vitamin D-Mangel) prinzipielle Mechanismen von Störungen des
						Knochen- und Kalziumstoffwechsels erklären können.
M10	WiSe2024	MW 2	Seminar 1: Molekulare Ursachen für Störungen im	Wissen/Kenntnisse	verstehen	am Beispiel ausgewählter Erkrankungen (primärer und sekundärer
			Knochenstoffwechsel	(kognitiv)		Hyperparathyreoidismus, familiäre hypokalzurische Hyperkalzämie,
						Vitamin D-Mangel) prinzipielle Mechanismen von Störungen des
						Knochen- und Kalziumstoffwechsels erklären können.
M10	SoSe2025	MW 2	Seminar 2.1: Molekulare Ursachen für Störungen	Wissen/Kenntnisse	verstehen	am Beispiel ausgewählter Erkrankungen (primärer und sekundärer
			im Knochenstoffwechsel	(kognitiv)		Hyperparathyreoidismus, familiäre hypokalzurische Hyperkalzämie,
						Vitamin D-Mangel) prinzipielle Mechanismen von Störungen des
						Knochen- und Kalziumstoffwechsels erklären können.
M10	SoSe2024	MW 3	Seminar 3: Der Skelettmuskel im	Wissen/Kenntnisse	verstehen	den Ablauf der elektromechanischen Kopplung und die beteiligten
			Gesamtorganismus	(kognitiv)		Strukturen & Moleküle detailliert beschreiben können.
M10	WiSe2024	MW 3	Seminar 3: Der Skelettmuskel im	Wissen/Kenntnisse	verstehen	den Ablauf der elektromechanischen Kopplung und die beteiligten
			Gesamtorganismus	(kognitiv)		Strukturen & Moleküle detailliert beschreiben können.
M10	SoSe2025	MW 3	Seminar 3.3: Der Skelettmuskel im	Wissen/Kenntnisse	verstehen	den Ablauf der elektromechanischen Kopplung und die beteiligten
			Gesamtorganismus	(kognitiv)		Strukturen & Moleküle detailliert beschreiben können.
M10	SoSe2024	MW 3	Praktikum: EMG und Muskelarbeit	Wissen/Kenntnisse	verstehen	die Mechanismen der Einstellung der Muskelkraft (nerval) erläutern
				(kognitiv)		können.
M10	WiSe2024	MW 3	Praktikum: EMG und Muskelarbeit	Wissen/Kenntnisse	verstehen	die Mechanismen der Einstellung der Muskelkraft (nerval) erläutern
				(kognitiv)		können.
M10	SoSe2025	MW 3	Praktikum: EMG und Muskelarbeit	Wissen/Kenntnisse	verstehen	die Mechanismen der Einstellung der Muskelkraft (nerval) erläutern
				(kognitiv)		können.
M10	SoSe2024	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	verstehen	die grundsätzliche Hierarchie der funktionellen Komponenten der
			Steuerung	(kognitiv)		motorischen Steuerung darstellen können.
M10	SoSe2024	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	erinnern	für die Komponenten der motorischen Steuerung Funktionen benennen
			Steuerung	(kognitiv)		können.
M10	WiSe2024	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	verstehen	die grundsätzliche Hierarchie der funktionellen Komponenten der
			Steuerung	(kognitiv)		motorischen Steuerung darstellen können.
M10	WiSe2024	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	erinnern	für die Komponenten der motorischen Steuerung Funktionen benennen
			Steuerung	(kognitiv)		können.
M10	SoSe2025	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	verstehen	die grundsätzliche Hierarchie der funktionellen Komponenten der
			Steuerung	(kognitiv)		motorischen Steuerung darstellen können.
		1	1 -	·		

M10	SoSe2025	MW 4	Vorlesung: Einführung in die motorische	Wissen/Kenntnisse	erinnern	für die Komponenten der motorischen Steuerung Funktionen benennen
			Steuerung	(kognitiv)		können.
M11	SoSe2024	Vorlesungswoche	Vorlesung: Psychosoziale Einflussfaktoren bei der	Wissen/Kenntnisse	erinnern	psychobiologische sowie psychophysiologische, psychoimmunologische
			Entstehung von Herz-Kreislauf-Erkrankungen	(kognitiv)		und neuroendokrinologische Mechanismen der Entstehung von Herz-
						und Gefäßerkrankungen benennen können.
M11	WiSe2024	Vorlesungswoche	Vorlesung: Psychosoziale Einflussfaktoren bei der	Wissen/Kenntnisse	erinnern	psychobiologische sowie psychophysiologische, psychoimmunologische
			Entstehung von Herz-Kreislauf-Erkrankungen	(kognitiv)		und neuroendokrinologische Mechanismen der Entstehung von Herz-
						und Gefäßerkrankungen benennen können.
M11	SoSe2025	Vorlesungswoche	Vorlesung: Psychosoziale Einflussfaktoren bei der	Wissen/Kenntnisse	erinnern	psychobiologische sowie psychophysiologische, psychoimmunologische
			Entstehung von Herz-Kreislauf-Erkrankungen	(kognitiv)		und neuroendokrinologische Mechanismen der Entstehung von Herz-
						und Gefäßerkrankungen benennen können.
M11	SoSe2024	MW 1	Seminar 2: Herzmechanik	Wissen/Kenntnisse	verstehen	die Auswirkung inotroper Stimulation durch Sympathikus oder
				(kognitiv)		Sympathomimetika auf das Druck-Volumendiagramm des Herzens
						erläutern können.
M11	WiSe2024	MW 1	Seminar 2: Herzmechanik	Wissen/Kenntnisse	verstehen	die Auswirkung inotroper Stimulation durch Sympathikus oder
				(kognitiv)		Sympathomimetika auf das Druck-Volumendiagramm des Herzens
						erläutern können.
M11	SoSe2025	MW 1	Seminar 1.2: Herzmechanik	Wissen/Kenntnisse	verstehen	die Auswirkung inotroper Stimulation durch Sympathikus oder
				(kognitiv)		Sympathomimetika auf das Druck-Volumendiagramm des Herzens
						erläutern können.
M11	SoSe2024	MW 1	Seminar 3: Aktionspotentiale am Herzen und	Wissen/Kenntnisse	verstehen	molekulare Mechanismen der positiv inotropen und lusitropen Wirkung
			elektromechanische Kopplung	(kognitiv)		des Sympathikus auf das Herz beschreiben können
M11	WiSe2024	MW 1	Seminar 3: Aktionspotentiale am Herzen und	Wissen/Kenntnisse	verstehen	molekulare Mechanismen der positiv inotropen und lusitropen Wirkung
			elektromechanische Kopplung	(kognitiv)		des Sympathikus auf das Herz beschreiben können
M11	SoSe2025	MW 1	Seminar 1.3: Aktionspotentiale am Herzen und	Wissen/Kenntnisse	verstehen	molekulare Mechanismen der positiv inotropen und lusitropen Wirkung
			elektromechanische Kopplung	(kognitiv)		des Sympathikus auf das Herz beschreiben können
M11	SoSe2024	MW 2	Seminar 1: Steuerung der Herzaktivität	Wissen/Kenntnisse	verstehen	die Steuerung der mechanischen und elektrischen Herzaktivitäten durch
				(kognitiv)		das Vegetativum im Hinblick auf Inotropie, Chronotropie, Bathmotropie,
						Dromotropie, Lusitropie beschreiben können.
M11	SoSe2024	MW 2	Seminar 1: Steuerung der Herzaktivität	Wissen/Kenntnisse	erinnern	typische physiologische und pathophysiologische Bedingungen
				(kognitiv)		benennen können, unter denen der Sympathikus oder der
						Parasympathikus die Steuerung der Herzaktivitäten dominiert.
M11	WiSe2024	MW 2	Seminar 1: Steuerung der Herzaktivität	Wissen/Kenntnisse	verstehen	die Steuerung der mechanischen und elektrischen Herzaktivitäten durch
				(kognitiv)		das Vegetativum im Hinblick auf Inotropie, Chronotropie, Bathmotropie,
						Dromotropie, Lusitropie beschreiben können.

M11	WiSe2024	MW 2	Seminar 1: Steuerung der Herzaktivität	Wissen/Kenntnisse	erinnern	typische physiologische und pathophysiologische Bedingungen
				(kognitiv)		benennen können, unter denen der Sympathikus oder der
						Parasympathikus die Steuerung der Herzaktivitäten dominiert.
M11	SoSe2025	MW 2	Seminar 2.1: Steuerung der Herzaktivität	Wissen/Kenntnisse	verstehen	die Steuerung der mechanischen und elektrischen Herzaktivitäten durch
				(kognitiv)		das Vegetativum im Hinblick auf Inotropie, Chronotropie, Bathmotropie,
						Dromotropie, Lusitropie beschreiben können.
M11	SoSe2025	MW 2	Seminar 2.1: Steuerung der Herzaktivität	Wissen/Kenntnisse	erinnern	typische physiologische und pathophysiologische Bedingungen
				(kognitiv)		benennen können, unter denen der Sympathikus oder der
						Parasympathikus die Steuerung der Herzaktivitäten dominiert.
M11	SoSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die funktionellen Elemente des Barorezeptorenreflexes, seine
			Blutvolumen	(kognitiv)		homöostatische Funktion und seine Rolle bei der Kreislaufanpassung an
						Orthostase beschreiben können.
M11	SoSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	erinnern	die funktionellen Elemente des Renin-Angiotensin-Aldosteron-Systems,
			Blutvolumen	(kognitiv)		der Osmolaritätsregulation, des Henry-Gauer-Reflexes sowie
						natriuretischer Peptide benennen können.
M11	SoSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die homöostatische Funktion des
			Blutvolumen	(kognitiv)		Renin-Angiotensin-Aldosteron-Systems und des Henry-Gauer-Reflexes
						und ihre Regelantwort bei isotoner Dehydratation erläutern können.
M11	WiSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die funktionellen Elemente des Barorezeptorenreflexes, seine
			Blutvolumen	(kognitiv)		homöostatische Funktion und seine Rolle bei der Kreislaufanpassung an
						Orthostase beschreiben können.
M11	WiSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	erinnern	die funktionellen Elemente des Renin-Angiotensin-Aldosteron-Systems,
			Blutvolumen	(kognitiv)		der Osmolaritätsregulation, des Henry-Gauer-Reflexes sowie
						natriuretischer Peptide benennen können.
M11	WiSe2024	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die homöostatische Funktion des
			Blutvolumen	(kognitiv)		Renin-Angiotensin-Aldosteron-Systems und des Henry-Gauer-Reflexes
						und ihre Regelantwort bei isotoner Dehydratation erläutern können.
M11	SoSe2025	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die funktionellen Elemente des Barorezeptorenreflexes, seine
			Blutvolumen	(kognitiv)		homöostatische Funktion und seine Rolle bei der Kreislaufanpassung an
						Orthostase beschreiben können.
M11	SoSe2025	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	erinnern	die funktionellen Elemente des Renin-Angiotensin-Aldosteron-Systems,
			Blutvolumen	(kognitiv)		der Osmolaritätsregulation, des Henry-Gauer-Reflexes sowie
						natriuretischer Peptide benennen können.

M11	SoSe2025	MW 3	Vorlesung: Regulation von Blutdruck und	Wissen/Kenntnisse	verstehen	die homöostatische Funktion des
			Blutvolumen	(kognitiv)		Renin-Angiotensin-Aldosteron-Systems und des Henry-Gauer-Reflexes
						und ihre Regelantwort bei isotoner Dehydratation erläutern können.
M11	SoSe2024	MW 3	Seminar 2: Zentrale Kreislaufregulation	Wissen/Kenntnisse	verstehen	die für die Kreislaufregulation wichtigen Strukturen und Funktionen des
				(kognitiv)		ZNS (sog. Kreislaufzentrum), deren periphere vegetative und
						somatische Afferenzen sowie nervale und humorale (Adrenalin,
						Angiotensin II) Efferenzen erklären können.
M11	WiSe2024	MW 3	Seminar 2: Zentrale Kreislaufregulation	Wissen/Kenntnisse	verstehen	die für die Kreislaufregulation wichtigen Strukturen und Funktionen des
				(kognitiv)		ZNS (sog. Kreislaufzentrum), deren periphere vegetative und
						somatische Afferenzen sowie nervale und humorale (Adrenalin,
						Angiotensin II) Efferenzen erklären können.
M11	SoSe2025	MW 3	Seminar 3.2: Zentrale Kreislaufregulation	Wissen/Kenntnisse	verstehen	die für die Kreislaufregulation wichtigen Strukturen und Funktionen des
				(kognitiv)		ZNS (sog. Kreislaufzentrum), deren periphere vegetative und
						somatische Afferenzen sowie nervale und humorale (Adrenalin,
						Angiotensin II) Efferenzen erklären können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel
			Durchblutungsregelung	(kognitiv)		Adrenalin und am Beispiel Renin-Angiotensin-Aldosteron-System und
						der pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären
						können.
M11	SoSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren
			Durchblutungsregelung	(kognitiv)		bei der lokalen Durchblutungsregulation anhand der Beispiele 'lokale
						Entzündung' und 'anaphylaktische Reaktion' sowie der
						pharmakologischen Beeinflussung durch ASS und Antihistaminika
						erklären können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel
			Durchblutungsregelung	(kognitiv)		Adrenalin und am Beispiel Renin-Angiotensin-Aldosteron-System und
						der pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären
						können.
M11	WiSe2024	MW 3	Seminar 3: Angebot und Nachfrage: die periphere	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren
			Durchblutungsregelung	(kognitiv)		bei der lokalen Durchblutungsregulation anhand der Beispiele 'lokale
						Entzündung' und 'anaphylaktische Reaktion' sowie der
						pharmakologischen Beeinflussung durch ASS und Antihistaminika
						erklären können.

M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die	Wissen/Kenntnisse	verstehen	hormonelle Mechanismen der Durchblutungsregulation am Beispiel
			periphere Durchblutungsregelung	(kognitiv)		Adrenalin und am Beispiel Renin-Angiotensin-Aldosteron-System und
						der pharmakologischen Beeinflussung durch RAAS-Inhibitoren erklären
						können.
M11	SoSe2025	MW 3	Seminar 3.3: Angebot und Nachfrage: die	Wissen/Kenntnisse	verstehen	die Rolle von Entzündungs-, Anaphylaxie- und Hämostase-Mediatoren
			periphere Durchblutungsregelung	(kognitiv)		bei der lokalen Durchblutungsregulation anhand der Beispiele 'lokale
						Entzündung' und 'anaphylaktische Reaktion' sowie der
						pharmakologischen Beeinflussung durch ASS und Antihistaminika
						erklären können.
M11	SoSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei Orthostase wirkenden hydrostatischen Ursachen und
			orthostatische Reaktion	(kognitiv)		hämodynamischen Konsequenzen des Lagewechsels und die an der
						physiologischen Kreislaufanpassung beteiligten
						Regulationsmechanismen erklären können.
M11	SoSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei passiver Orthostase (Kipptisch) und aktiver Orthostase
			orthostatische Reaktion	(kognitiv)		(Schellong-Test) eintretenden Änderungen von systolischem und
						diastolischem arteriellem Druck, Schlagvolumen und Herzfrequenz
						erklären können.
M11	SoSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	auf Grundlage der physiologischen Orthostasereaktion und der
			orthostatische Reaktion	(kognitiv)		beteiligten Mechanismen typische Ursachen orthostatischer
						Dysregulation erklären können.
M11	WiSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei Orthostase wirkenden hydrostatischen Ursachen und
			orthostatische Reaktion	(kognitiv)		hämodynamischen Konsequenzen des Lagewechsels und die an der
						physiologischen Kreislaufanpassung beteiligten
						Regulationsmechanismen erklären können.
M11	WiSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei passiver Orthostase (Kipptisch) und aktiver Orthostase
			orthostatische Reaktion	(kognitiv)		(Schellong-Test) eintretenden Änderungen von systolischem und
						diastolischem arteriellem Druck, Schlagvolumen und Herzfrequenz
						erklären können.
M11	WiSe2024	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	auf Grundlage der physiologischen Orthostasereaktion und der
			orthostatische Reaktion	(kognitiv)		beteiligten Mechanismen typische Ursachen orthostatischer
						Dysregulation erklären können.
M11	SoSe2025	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei Orthostase wirkenden hydrostatischen Ursachen und
			orthostatische Reaktion	(kognitiv)		hämodynamischen Konsequenzen des Lagewechsels und die an der
						physiologischen Kreislaufanpassung beteiligten
						Regulationsmechanismen erklären können.

M11	SoSe2025	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	die bei passiver Orthostase (Kipptisch) und aktiver Orthostase
			orthostatische Reaktion	(kognitiv)		(Schellong-Test) eintretenden Änderungen von systolischem und
						diastolischem arteriellem Druck, Schlagvolumen und Herzfrequenz
						erklären können.
M11	SoSe2025	MW 3	Praktikum: Kreislauf und Schwerkraft: die	Wissen/Kenntnisse	verstehen	auf Grundlage der physiologischen Orthostasereaktion und der
			orthostatische Reaktion	(kognitiv)		beteiligten Mechanismen typische Ursachen orthostatischer
						Dysregulation erklären können.
M12	SoSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen den funktionellen Aufbau und die zellulären Bestandteile
			Brain-Gut-Axis	(kognitiv)		des enterischen Nervensystems erläutern können.
M12	SoSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen die Kommunikationswege des enterischen
			Brain-Gut-Axis	(kognitiv)		Nervensystems zum Gehirn und zurück unter Einbeziehung der
						prävertebralen Ganglien, des Sympathikus und des Parasympathikus
						beschreiben können.
M12	SoSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	den morphologischen und funktionellen Aufbau des autonomen
			Brain-Gut-Axis	(kognitiv)		Nervensystems (Sympathisches Nervensystem und Parasympathisches
						Nervensystem) beschreiben können.
M12	WiSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen den funktionellen Aufbau und die zellulären Bestandteile
			Brain-Gut-Axis	(kognitiv)		des enterischen Nervensystems erläutern können.
M12	WiSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen die Kommunikationswege des enterischen
			Brain-Gut-Axis	(kognitiv)		Nervensystems zum Gehirn und zurück unter Einbeziehung der
						prävertebralen Ganglien, des Sympathikus und des Parasympathikus
						beschreiben können.
M12	WiSe2024	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	den morphologischen und funktionellen Aufbau des autonomen
			Brain-Gut-Axis	(kognitiv)		Nervensystems (Sympathisches Nervensystem und Parasympathisches
						Nervensystem) beschreiben können.
M12	SoSe2025	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen den funktionellen Aufbau und die zellulären Bestandteile
			Brain-Gut-Axis	(kognitiv)		des enterischen Nervensystems erläutern können.
M12	SoSe2025	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	in Grundzügen die Kommunikationswege des enterischen
			Brain-Gut-Axis	(kognitiv)		Nervensystems zum Gehirn und zurück unter Einbeziehung der
						prävertebralen Ganglien, des Sympathikus und des Parasympathikus
						beschreiben können.
M12	SoSe2025	Vorlesungswoche	Vorlesung: Enterisches Nervensystem	Wissen/Kenntnisse	verstehen	den morphologischen und funktionellen Aufbau des autonomen
			Brain-Gut-Axis	(kognitiv)		Nervensystems (Sympathisches Nervensystem und Parasympathisches
						Nervensystem) beschreiben können.

M12	SoSe2024	MW 1	Seminar 1: Magensaftsekretion	Wissen/Kenntnisse (kognitiv)	verstehen	das Zusammenwirken nervaler und humoraler Mechanismen für die verschiedenen Phasen der Magensaftsekretion beschreiben können.
M12	SoSe2024	MW 1	Seminar 1: Magensaftsekretion	Wissen/Kenntnisse (kognitiv)	verstehen	am Beispiel des Gastrinoms die Folgen einer gesteigerten HCl-Sekretion beschreiben können.
M12	WiSe2024	MW 1	Seminar 1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	das Zusammenwirken nervaler und humoraler Mechanismen für die
	11/10 2221	1.0.7.	Regulation und Pharmakologische Interventionen	(kognitiv)		verschiedenen Phasen der Magensaftsekretion beschreiben können.
M12	WiSe2024	MW 1	Seminar 1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	am Beispiel des Gastrinoms die Folgen einer gesteigerten HCl-Sekretion
1440	0.0.005	1004	Regulation und Pharmakologische Interventionen	(kognitiv)		beschreiben können.
M12	SoSe2025	MW 1	Seminar 1.1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	das Zusammenwirken nervaler und humoraler Mechanismen für die
			Regulation und Pharmakologische Interventionen	(kognitiv)		verschiedenen Phasen der Magensaftsekretion beschreiben können.
M12	SoSe2025	MW 1	Seminar 1.1: Magensaftsekretion: Physiologische	Wissen/Kenntnisse	verstehen	am Beispiel des Gastrinoms die Folgen einer gesteigerten HCl-Sekretion
			Regulation und Pharmakologische Interventionen	(kognitiv)		beschreiben können.
M12	SoSe2024	MW 1	Seminar 3: Intestinale Verdauung von	Wissen/Kenntnisse	verstehen	am Beispiel von Gastrin, Somatostatin, Cholecystokinin (CCK,
			Kohlenhydraten, Lipiden und Proteinen	(kognitiv)		Pankreozymin) und Sekretin die Bedeutung von Hormonen für die
						Steuerung verschiedener gastro-intestinaler Funktionen erläutern
						können.
M12	WiSe2024	MW 1	Seminar 3: Intestinale Verdauung von	Wissen/Kenntnisse	verstehen	am Beispiel von Gastrin, Somatostatin, Cholecystokinin (CCK,
			Kohlenhydraten, Lipiden und Proteinen	(kognitiv)		Pankreozymin) und Sekretin die Bedeutung von Hormonen für die
						Steuerung verschiedener gastro-intestinaler Funktionen erläutern
						können.
M12	SoSe2025	MW 1	Seminar 1.3: Intestinale Verdauung von	Wissen/Kenntnisse	verstehen	am Beispiel von Gastrin, Somatostatin, Cholecystokinin (CCK,
			Kohlenhydraten, Lipiden und Proteinen	(kognitiv)		Pankreozymin) und Sekretin die Bedeutung von Hormonen für die
						Steuerung verschiedener gastro-intestinaler Funktionen erläutern
						können.
M12	SoSe2024	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	verstehen	die Steuerung des zentralen Sättigungsgefühls am Beispiel der
			Hunger-Sättigungsregulation	(kognitiv)		gegenseitigen Inhibierung von Neuropeptide-Y(NPY)-produzierenden
				,		Neuronen (Steigerung der Nahrungsaufnahme) und
						Proopiomelanocortin (POMC)-produzierenden Neuronen (Hemmung der
						Nahrungsaufnahme) im Nukleus arcuatus des Hypothalamus erklären
						können.
M12	SoSe2024	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	analysieren	die Funktion peripherer Peptide (Insulin, Leptin, Ghrelin,
14112	00002024		Hunger-Sättigungsregulation		anarysion	Cholezystokinin) bei der Regulation der Nahrungsaufnahme zuordnen
			Trunger-Satugungsregulation	(kognitiv)		
						können.

M12	WiSe2024	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	verstehen	die Steuerung des zentralen Sättigungsgefühls am Beispiel der
			Hunger-Sättigungsregulation	(kognitiv)		gegenseitigen Inhibierung von Neuropeptide-Y(NPY)-produzierenden
						Neuronen (Steigerung der Nahrungsaufnahme) und
						Proopiomelanocortin (POMC)-produzierenden Neuronen (Hemmung der
						Nahrungsaufnahme) im Nukleus arcuatus des Hypothalamus erklären
						können.
M12	WiSe2024	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	analysieren	die Funktion peripherer Peptide (Insulin, Leptin, Ghrelin,
			Hunger-Sättigungsregulation	(kognitiv)		Cholezystokinin) bei der Regulation der Nahrungsaufnahme zuordnen
						können.
M12	SoSe2025	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	verstehen	die Steuerung des zentralen Sättigungsgefühls am Beispiel der
			Hunger-Sättigungsregulation	(kognitiv)		gegenseitigen Inhibierung von Neuropeptide-Y(NPY)-produzierenden
						Neuronen (Steigerung der Nahrungsaufnahme) und
						Proopiomelanocortin (POMC)-produzierenden Neuronen (Hemmung der
						Nahrungsaufnahme) im Nukleus arcuatus des Hypothalamus erklären
						können.
M12	SoSe2025	MW 2	Vorlesung: Satt und zufrieden? Mechanismen der	Wissen/Kenntnisse	analysieren	die Funktion peripherer Peptide (Insulin, Leptin, Ghrelin,
			Hunger-Sättigungsregulation	(kognitiv)		Cholezystokinin) bei der Regulation der Nahrungsaufnahme zuordnen
						können.
M12	SoSe2024	MW 2	Präparierkurs: Präparation der Blutgefäße des	Wissen/Kenntnisse	analysieren	die Bauchorgane dem entsprechenden Versorgungsgebiet der
			Bauchraums II und der Leber, vegetative	(kognitiv)		autonomen Nervenplexus (Plexus coeliacus, mesentericus
			Innervation der Bauchorgane			superius/inferius, hypogastricus) zuordnen können.
M12	WiSe2024	MW 2	Präparierkurs: Präparation der Blutgefäße des	Wissen/Kenntnisse	analysieren	die Bauchorgane dem entsprechenden Versorgungsgebiet der
			Bauchraums II und der Leber, vegetative	(kognitiv)		autonomen Nervenplexus (Plexus coeliacus, mesentericus
			Innervation der Bauchorgane			superius/inferius, hypogastricus) zuordnen können.
M12	SoSe2025	MW 2	Präparierkurs: Präparation der Blutgefäße des	Wissen/Kenntnisse	analysieren	die Bauchorgane dem entsprechenden Versorgungsgebiet der
			Bauchraums II und der Leber, vegetative	(kognitiv)		autonomen Nervenplexus (Plexus coeliacus, mesentericus
			Innervation der Bauchorgane			superius/inferius, hypogastricus) zuordnen können.
M14	WiSe2024	MW 3	Seminar 1: Regulationsmechanismen des	Wissen/Kenntnisse	verstehen	die Steuerungsmechanismen der ADH-Freisetzung erklären können.
			Wasserhaushaltes	(kognitiv)		
M14	SoSe2025	MW 3	Seminar 3.1: Regulationsmechanismen des	Wissen/Kenntnisse	verstehen	die Steuerungsmechanismen der ADH-Freisetzung erklären können.
			Wasserhaushaltes	(kognitiv)		
M14	WiSe2024	MW 4	Vorlesung: Endokrine Funktion der Nieren für den	Wissen/Kenntnisse	verstehen	in Grundzügen die Mechanismen der hormonellen Regulation
			Kalzium- und Phosphathaushalt: Parathormon,	(kognitiv)		(Parathormon, Calcitriol, Phosphatonin (FGF23)) der renalen Kalzium-
			Calcitriol & Phosphatonine			und Phosphatretention und -ausscheidung beschreiben können.

M14	WiSe2024	MW 4	Vorlesung: Endokrine Funktion der Nieren für den	Wissen/Kenntnisse	verstehen	in Grundzügen die hormonelle Regulation der renalen Calcitriolsynthese
			Kalzium- und Phosphathaushalt: Parathormon,	(kognitiv)		durch Parathormon und Phosphatonin (FGF23) beschreiben können.
			Calcitriol & Phosphatonine			
M14	SoSe2025	MW 4	Vorlesung: Endokrine Funktion der Nieren für den	Wissen/Kenntnisse	verstehen	in Grundzügen die Mechanismen der hormonellen Regulation
			Kalzium- und Phosphathaushalt: Parathormon,	(kognitiv)		(Parathormon, Calcitriol, Phosphatonin (FGF23)) der renalen Kalzium-
			Calcitriol & Phosphatonine			und Phosphatretention und –ausscheidung beschreiben können.
M14	SoSe2025	MW 4	Vorlesung: Endokrine Funktion der Nieren für den	Wissen/Kenntnisse	verstehen	in Grundzügen die hormonelle Regulation der renalen Calcitriolsynthese
			Kalzium- und Phosphathaushalt: Parathormon,	(kognitiv)		durch Parathormon und Phosphatonin (FGF23) beschreiben können.
			Calcitriol & Phosphatonine			
M14	WiSe2024	MW 4	Seminar 1: Renin-Angiotensin-Aldosteron-System	Wissen/Kenntnisse	verstehen	die Rolle des Renin-Angiotensin-Aldosteron-Systems für die Regulation
			und renale Hypertonie	(kognitiv)		von Blutdruck, Salz- und Wasserhaushalt beschreiben können.
M14	WiSe2024	MW 4	Seminar 1: Renin-Angiotensin-Aldosteron-System	Wissen/Kenntnisse	verstehen	die Mechanismen der Steuerung der Reninfreisetzung beschreiben
			und renale Hypertonie	(kognitiv)		können.
M14	WiSe2024	MW 4	Seminar 1: Renin-Angiotensin-Aldosteron-System	Wissen/Kenntnisse	verstehen	in Grundzügen den "genomischen" Wirkmechanismus von Aldosteron
			und renale Hypertonie	(kognitiv)		via Mineralocorticoidrezeptor und ENaC im distalen Nephron
						beschreiben können.
M14	SoSe2025	MW 4	Seminar 4.1:	Wissen/Kenntnisse	verstehen	die Rolle des Renin-Angiotensin-Aldosteron-Systems für die Regulation
			Renin-Angiotensin-Aldosteron-System und renale	(kognitiv)		von Blutdruck, Salz- und Wasserhaushalt beschreiben können.
			Hypertonie			
M14	SoSe2025	MW 4	Seminar 4.1:	Wissen/Kenntnisse	verstehen	die Mechanismen der Steuerung der Reninfreisetzung beschreiben
			Renin-Angiotensin-Aldosteron-System und renale	(kognitiv)		können.
			Hypertonie			
M14	SoSe2025	MW 4	Seminar 4.1:	Wissen/Kenntnisse	verstehen	in Grundzügen den "genomischen" Wirkmechanismus von Aldosteron
			Renin-Angiotensin-Aldosteron-System und renale	(kognitiv)		via Mineralocorticoidrezeptor und ENaC im distalen Nephron
			Hypertonie			beschreiben können.
M14	WiSe2024	MW 4	Praktikum: Praktikum: Über den Durst getrunken?	Wissen/Kenntnisse	verstehen	das differenzierte Ansprechen der Osmoregulation, des RAAS und des
				(kognitiv)		Henry-Gauer-Reflexes auf Veränderungen des Flüssigkeitsbestandes
						und/oder der Osmolalität erklären können.
M14	SoSe2025	MW 4	Praktikum: Praktikum: Über den Durst getrunken?	Wissen/Kenntnisse	verstehen	das differenzierte Ansprechen der Osmoregulation, des RAAS und des
				(kognitiv)		Henry-Gauer-Reflexes auf Veränderungen des Flüssigkeitsbestandes
						und/oder der Osmolalität erklären können.
M15	WiSe2024	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	die wichtigsten modulatorischen Transmitter (Acetylcholin, Dopamin,
			zentralen Nervensystem	(kognitiv)		Serotonin, Noradrenalin, Histamin) in Bezug auf Syntheseorte und
						beteiligte Rezeptoren im zentralen Nervensystem darstellen können.

M15	WiSe2024	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	am Beispiel des serotoninergen Systems erläutern können, wie durch
			zentralen Nervensystem	(kognitiv)		differenzielle Rezeptorexpression (5HT 1A,1B, 2 und 3) lokale
						Wirkspezifität erreicht wird.
M15	WiSe2024	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	in Grundzügen die Konzepte der basalen und modulatorischen
			zentralen Nervensystem	(kognitiv)		Neurotransmission beschreiben können (Vorwärts- und
						Rückkopplungsschleifen erregender und hemmender Schaltkreise sowie
						Kotransmission und Volumentransmission modulatorischer Transmitter).
M15	SoSe2025	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	die wichtigsten modulatorischen Transmitter (Acetylcholin, Dopamin,
			zentralen Nervensystem	(kognitiv)		Serotonin, Noradrenalin, Histamin) in Bezug auf Syntheseorte und
						beteiligte Rezeptoren im zentralen Nervensystem darstellen können.
M15	SoSe2025	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	am Beispiel des serotoninergen Systems erläutern können, wie durch
			zentralen Nervensystem	(kognitiv)		differenzielle Rezeptorexpression (5HT 1A,1B, 2 und 3) lokale
						Wirkspezifität erreicht wird.
M15	SoSe2025	MW 1	Vorlesung: Prinzipien der Neurotransmission im	Wissen/Kenntnisse	verstehen	in Grundzügen die Konzepte der basalen und modulatorischen
			zentralen Nervensystem	(kognitiv)		Neurotransmission beschreiben können (Vorwärts- und
						Rückkopplungsschleifen erregender und hemmender Schaltkreise sowie
						Kotransmission und Volumentransmission modulatorischer Transmitter).
M15	WiSe2024	MW 1	Patientenvorstellung: Patient*in mit Amyotropher	Wissen/Kenntnisse	analysieren	die klinischen Zeichen bei einer Schädigung des 1. motorischen
			Lateralsklerose	(kognitiv)		Neurons von denen bei einer Schädigung des 2. motorischen Neurons
						abgrenzen können.
M15	SoSe2025	MW 1	Patientenvorstellung: Patient*in mit Amyotropher	Wissen/Kenntnisse	analysieren	die klinischen Zeichen bei einer Schädigung des 1. motorischen
			Lateralsklerose	(kognitiv)		Neurons von denen bei einer Schädigung des 2. motorischen Neurons
						abgrenzen können.
M15	WiSe2024	MW 1	Praktikum: Motorisch und sensorisch evozierte	Wissen/Kenntnisse	verstehen	die Methodik von sensorisch-evozierten Potenzialen zur
			Potenziale	(kognitiv)		Funktionsüberprüfung des somatosensorischen Systems beschreiben
						können.
M15	WiSe2024	MW 1	Praktikum: Motorisch und sensorisch evozierte	Wissen/Kenntnisse	verstehen	die Methodik von motorisch-evozierten Potenzialen zur
			Potenziale	(kognitiv)		Funktionsüberprüfung des motorischen Systems beschreiben können.
M15	SoSe2025	MW 1	Praktikum: Motorisch und sensorisch evozierte	Wissen/Kenntnisse	verstehen	die Methodik von sensorisch-evozierten Potenzialen zur
			Potenziale	(kognitiv)		Funktionsüberprüfung des somatosensorischen Systems beschreiben
						können.
M15	SoSe2025	MW 1	Praktikum: Motorisch und sensorisch evozierte	Wissen/Kenntnisse	verstehen	die Methodik von motorisch-evozierten Potenzialen zur
			Potenziale	(kognitiv)		Funktionsüberprüfung des motorischen Systems beschreiben können.

M15	WiSe2024	MW 3	Vorlesung: Anatomie und Funktion der	Wissen/Kenntnisse	verstehen	die Verbindungen der Basalganglien in Form der direkten und indirekten
			Basalganglien	(kognitiv)		Schleifen morphologisch und funktionell (Verbindung, Transmitter, Effekt
						im Zielgebiet) erläutern können.
M15	SoSe2025	MW 3	Vorlesung: Anatomie und Funktion der	Wissen/Kenntnisse	verstehen	die Verbindungen der Basalganglien in Form der direkten und indirekten
			Basalganglien	(kognitiv)		Schleifen morphologisch und funktionell (Verbindung, Transmitter, Effekt
						im Zielgebiet) erläutern können.
M15	WiSe2024	MW 3	Seminar 2: Cerebelläre Bewegungsstörungen und	Wissen/Kenntnisse	verstehen	die allgemeinen funktionellen Anforderungen des Kleinhirns
			ihre neurophysiologischen Grundlagen	(kognitiv)		(Generierung präziser raum-zeitlicher Aktivitätsmuster, Lernfähigkeit) im
						Kontext seiner spezifischen Mikroanatomie und Zytoarchitektur erläutern
						können.
M15	SoSe2025	MW 3	Seminar 3.2: Cerebelläre Bewegungsstörungen	Wissen/Kenntnisse	verstehen	die allgemeinen funktionellen Anforderungen des Kleinhirns
			und ihre neurophysiologischen Grundlagen	(kognitiv)		(Generierung präziser raum-zeitlicher Aktivitätsmuster, Lernfähigkeit) im
						Kontext seiner spezifischen Mikroanatomie und Zytoarchitektur erläutern
						können.
M16	WiSe2024	MW 1	Vorlesung: Von der Retina zum Kortex	Wissen/Kenntnisse	verstehen	die Entstehung des ON-OFF-Systems auf retinaler Ebene erklären
				(kognitiv)		können.
M16	WiSe2024	MW 1	Vorlesung: Von der Retina zum Kortex	Wissen/Kenntnisse	verstehen	die Prinzipien Retinotopie und funktionelle Spezialisierung im Sehsystem
				(kognitiv)		erklären können.
M16	SoSe2025	MW 1	Vorlesung: Von der Retina zum Kortex	Wissen/Kenntnisse	verstehen	die Entstehung des ON-OFF-Systems auf retinaler Ebene erklären
				(kognitiv)		können.
M16	SoSe2025	MW 1	Vorlesung: Von der Retina zum Kortex	Wissen/Kenntnisse	verstehen	die Prinzipien Retinotopie und funktionelle Spezialisierung im Sehsystem
				(kognitiv)		erklären können.
M16	WiSe2024	MW 2	Seminar 3: Physiologie des peripheren	Wissen/Kenntnisse	verstehen	die mechano-elektrische Signaltransduktion in Haarsinneszellen des
			Vestibularorgans	(kognitiv)		Vestibularorgans für Bewegungs- und Lagesinn erklären können.
M16	SoSe2025	MW 2	Seminar 2.3: Physiologie des peripheren	Wissen/Kenntnisse	verstehen	die mechano-elektrische Signaltransduktion in Haarsinneszellen des
			Vestibularorgans	(kognitiv)		Vestibularorgans für Bewegungs- und Lagesinn erklären können.
M16	WiSe2024	MW 2	Praktikum: Grundlegende Praxis der subjektiven	Wissen/Kenntnisse	verstehen	das Prinzip der Messung der otoakustischen Emissionen und akustisch
			und objektiven Audiometrie	(kognitiv)		evozierten Potentiale (Screening) als objektive Hörtestungen erläutern
						können.
M16	WiSe2024	MW 2	Praktikum: Grundlegende Praxis der subjektiven	Wissen/Kenntnisse	verstehen	das Prinzip der Methoden der subjektiven Audiometrie (Ton- und
			und objektiven Audiometrie	(kognitiv)		Sprachaudiogramme) erläutern können.
M16	SoSe2025	MW 2	Praktikum: Grundlegende Praxis der subjektiven	Wissen/Kenntnisse	verstehen	das Prinzip der Messung der otoakustischen Emissionen und akustisch
			und objektiven Audiometrie	(kognitiv)		evozierten Potentiale (Screening) als objektive Hörtestungen erläutern
						können.

M16	SoSe2025	MW 2	Praktikum: Grundlegende Praxis der subjektiven	Wissen/Kenntnisse	verstehen	das Prinzip der Methoden der subjektiven Audiometrie (Ton- und
			und objektiven Audiometrie	(kognitiv)		Sprachaudiogramme) erläutern können.
M16	WiSe2024	MW 3	Vorlesung: Riechen und Schmecken: Funktionelle	Wissen/Kenntnisse	verstehen	die sensible und sensorische Innervation der Zunge, der Mundhöhle und
			Anatomie von Mundhöhle und	(kognitiv)		des Pharynx erläutern können.
			Nasen-Rachenraum			
M16	SoSe2025	MW 3	Vorlesung: Riechen und Schmecken: Funktionelle	Wissen/Kenntnisse	verstehen	die sensible und sensorische Innervation der Zunge, der Mundhöhle und
			Anatomie von Mundhöhle und	(kognitiv)		des Pharynx erläutern können.
			Nasen-Rachenraum			
M16	WiSe2024	MW 3	Vorlesung: Zentrale Verarbeitung von Geruch und	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung von Geruchsinformationen
			Geschmack	(kognitiv)		beschreiben können.
M16	WiSe2024	MW 3	Vorlesung: Zentrale Verarbeitung von Geruch und	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung der Geschmacksinformationen
			Geschmack	(kognitiv)		aus der Mundhöhle beschreiben können.
M16	SoSe2025	MW 3	Vorlesung: Zentrale Verarbeitung von Geruch und	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung von Geruchsinformationen
			Geschmack	(kognitiv)		beschreiben können.
M16	SoSe2025	MW 3	Vorlesung: Zentrale Verarbeitung von Geruch und	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung der Geschmacksinformationen
			Geschmack	(kognitiv)		aus der Mundhöhle beschreiben können.
M19	WiSe2024	MW 1	Praktikum: Tumormikrozirkulation und vaskuläre	Wissen/Kenntnisse	analysieren	wichtige Mediatoren der Angiogenese und Anti-Angiogenese zuordnen
			Adaptation	(kognitiv)		und ihre Wirkungsweise beschreiben können.
M19	SoSe2025	MW 1	Praktikum: Tumormikrozirkulation und vaskuläre	Wissen/Kenntnisse	analysieren	wichtige Mediatoren der Angiogenese und Anti-Angiogenese zuordnen
			Adaptation	(kognitiv)		und ihre Wirkungsweise beschreiben können.
M20	WiSe2024	Prolog/ Epilog	Vorlesung Prolog: Funktionelle Anatomie der	Wissen/Kenntnisse	erinnern	den Mandelkern (Corpus amygdaloideum) an anatomischen Präparaten,
			Psyche	(kognitiv)		Modellen oder auf einer Abbildung identifizieren und seine prinzipielle
						Funktion benennen können.
M20	SoSe2025	Prolog/ Epilog	Vorlesung Prolog: Funktionelle Anatomie der	Wissen/Kenntnisse	erinnern	den Mandelkern (Corpus amygdaloideum) an anatomischen Präparaten,
			Psyche	(kognitiv)		Modellen oder auf einer Abbildung identifizieren und seine prinzipielle
						Funktion benennen können.
M20	WiSe2024	Prolog/ Epilog	Vorlesung Prolog: Anatomische und	Wissen/Kenntnisse	verstehen	die anatomischen Komponenten der Schmerzverarbeitung und
			physiologische Grundlagen des Schmerzes	(kognitiv)		Schmerzwahrnehmung (aufsteigende Bahnen, absteigende Bahnen,
						thalamische und kortikale Repräsentation) darstellen können.
M20	WiSe2024	Prolog/ Epilog	Vorlesung Prolog: Anatomische und	Wissen/Kenntnisse	verstehen	die Entstehung peripherer und zentraler Schmerzsensibilisierung
			physiologische Grundlagen des Schmerzes	(kognitiv)		einschließlich der kortikalen Reorganisation erläutern können.
M20	SoSe2025	Prolog/ Epilog	Vorlesung Prolog: Anatomische und	Wissen/Kenntnisse	verstehen	die anatomischen Komponenten der Schmerzverarbeitung und
			physiologische Grundlagen des Schmerzes	(kognitiv)		Schmerzwahrnehmung (aufsteigende Bahnen, absteigende Bahnen,
						thalamische und kortikale Repräsentation) darstellen können.

M20	SoSe2025	Prolog/ Epilog	Vorlesung Prolog: Anatomische und	Wissen/Kenntnisse	verstehen	die Entstehung peripherer und zentraler Schmerzsensibilisierung
			physiologische Grundlagen des Schmerzes	(kognitiv)		einschließlich der kortikalen Reorganisation erläutern können.
M20	WiSe2024	MW 1	Seminar 2: Postoperatives Stresssyndrom	Wissen/Kenntnisse	analysieren	metabolische Veränderungen als Zeichen einer Aktivierung der
				(kognitiv)		endokrinen hypothalamisch-hypophysären Stressachse charakterisieren
						können.
M20	WiSe2024	MW 1	Seminar 2: Postoperatives Stresssyndrom	Wissen/Kenntnisse	verstehen	Veränderungen der Wundheilung als Ausdruck einer Suppression des
				(kognitiv)		Immunsystems beschreiben können.
M20	SoSe2025	MW 1	Seminar 2: Postoperatives Stresssyndrom	Wissen/Kenntnisse	analysieren	metabolische Veränderungen als Zeichen einer Aktivierung der
				(kognitiv)		endokrinen hypothalamisch-hypophysären Stressachse charakterisieren
						können.
M20	SoSe2025	MW 1	Seminar 2: Postoperatives Stresssyndrom	Wissen/Kenntnisse	verstehen	Veränderungen der Wundheilung als Ausdruck einer Suppression des
				(kognitiv)		Immunsystems beschreiben können.
M20	WiSe2024	MW 3	Seminar 5: Das gestresste Gehirn -	Wissen/Kenntnisse	erinnern	Beispiele für die Wechselwirkung von Zytokinen und CRH/ Kortisol im
			Psychoendokrine und psychoimmunologische	(kognitiv)		Körper und im Gehirn benennen können.
			Mechanismen stressabhängiger Störungen			
M20	WiSe2024	MW 3	Seminar 5: Das gestresste Gehirn -	Wissen/Kenntnisse	verstehen	die Wirkung von CRH, Noradrenalin und Cortisol auf den Organismus
			Psychoendokrine und psychoimmunologische	(kognitiv)		bei Stress erläutern können.
			Mechanismen stressabhängiger Störungen			
M20	SoSe2025	MW 3	Seminar 5: Das gestresste Gehirn -	Wissen/Kenntnisse	erinnern	Beispiele für die Wechselwirkung von Zytokinen und CRH/ Kortisol im
			Psychoendokrine und psychoimmunologische	(kognitiv)		Körper und im Gehirn benennen können.
			Mechanismen stressabhängiger Störungen			
M20	SoSe2025	MW 3	Seminar 5: Das gestresste Gehirn -	Wissen/Kenntnisse	verstehen	die Wirkung von CRH, Noradrenalin und Cortisol auf den Organismus
			Psychoendokrine und psychoimmunologische	(kognitiv)		bei Stress erläutern können.
			Mechanismen stressabhängiger Störungen			
M22	WiSe2024	MW 1	Vorlesung: Das endokrine System des Menschen	Wissen/Kenntnisse	verstehen	die Veränderung der Sekretion der verschiedenen Hormone im Laufe
				(kognitiv)		der gesamten Lebensspanne in Grundzügen beschreiben können.
M22	SoSe2025	MW 1	Vorlesung: Das endokrine System des Menschen	Wissen/Kenntnisse	verstehen	die Veränderung der Sekretion der verschiedenen Hormone im Laufe
				(kognitiv)		der gesamten Lebensspanne in Grundzügen beschreiben können.
M22	WiSe2024	MW 1	Patientenvorstellung: Patient*in mit	Wissen/Kenntnisse	verstehen	auf pathophysiologischer Grundlage die Auswirkungen einer
			endokrinologisch bedingter Entwicklungsstörung	(kognitiv)		angeborenen Endokrinopathie (angeborene Hypothyreose,
						Adrenogenitales Syndrom oder Hypopituitarismus) auf die körperliche
						und sexuelle Reifung beschreiben können.

M22	SoSe2025	MW 1	Patientenvorstellung: Patient*in mit	Wissen/Kenntnisse	verstehen	auf pathophysiologischer Grundlage die Auswirkungen einer
			endokrinologisch bedingter Entwicklungsstörung	(kognitiv)		angeborenen Endokrinopathie (angeborene Hypothyreose,
						Adrenogenitales Syndrom oder Hypopituitarismus) auf die körperliche
						und sexuelle Reifung beschreiben können.
M22	WiSe2024	MW 1	Vorlesung: Onto- und phylogenetische	Wissen/Kenntnisse	verstehen	in Grundzügen die geschlechtstypischen Unterschiede in der
			Entwicklung des endokrinen Systems	(kognitiv)		hormonellen Steuerung und Feedbackregulation von LH und FSH durch
						Sexualsteroide, gonadale Hormone und das Kisspeptinsystem prä- und
						postmenopausal erklären können.
M22	WiSe2024	MW 1	Vorlesung: Onto- und phylogenetische	Wissen/Kenntnisse	analysieren	am Beispiel der Glykoproteohormone die normale Funktion der
			Entwicklung des endokrinen Systems	(kognitiv)		HPG-Achse erläutern und unter Einbeziehung phylogenetischer Aspekte
						Auswirkungen von Fehlfunktionen der HPG-Achse ableiten können.
M22	SoSe2025	MW 1	Vorlesung: Onto- und phylogenetische	Wissen/Kenntnisse	verstehen	in Grundzügen die geschlechtstypischen Unterschiede in der
			Entwicklung des endokrinen Systems	(kognitiv)		hormonellen Steuerung und Feedbackregulation von LH und FSH durch
						Sexualsteroide, gonadale Hormone und das Kisspeptinsystem prä- und
						postmenopausal erklären können.
M22	SoSe2025	MW 1	Vorlesung: Onto- und phylogenetische	Wissen/Kenntnisse	analysieren	am Beispiel der Glykoproteohormone die normale Funktion der
			Entwicklung des endokrinen Systems	(kognitiv)		HPG-Achse erläutern und unter Einbeziehung phylogenetischer Aspekte
						Auswirkungen von Fehlfunktionen der HPG-Achse ableiten können.
M22	WiSe2024	MW 2	Vorlesung: Menstruationszyklus und Prinzipien	Wissen/Kenntnisse	verstehen	die Regulationsmechanismen der
			der Kontrazeption	(kognitiv)		Hypothalamisch-Hypophysär-Ovariellen (HHO)-Achse beschreiben
						können.
M22	SoSe2025	MW 2	Vorlesung: Menstruationszyklus und Prinzipien	Wissen/Kenntnisse	verstehen	die Regulationsmechanismen der
			der Kontrazeption	(kognitiv)		Hypothalamisch-Hypophysär-Ovariellen (HHO)-Achse beschreiben
						können.
M22	WiSe2024	MW 2	Praktikum: Histologie der Genitalorgane I	Wissen/Kenntnisse	analysieren	die in die Oogenese involvierten Zelltypen beschreiben, im Mikroskop
				(kognitiv)		oder anhand von mikroskopischen Bildern zuordnen sowie die
						Korrelation der Zellformen mit den Stadien der Keimzellbildung erläutern
						können.
M22	SoSe2025	MW 2	Praktikum: Histologie der Genitalorgane I	Wissen/Kenntnisse	analysieren	die in die Oogenese involvierten Zelltypen beschreiben, im Mikroskop
				(kognitiv)		oder anhand von mikroskopischen Bildern zuordnen sowie die
						Korrelation der Zellformen mit den Stadien der Keimzellbildung erläutern
						können.
M22	WiSe2024	Epilog	Vorlesung Epilog: Moleküle der Gefühle	Einstellungen		die Entstehung von Gefühlen als einen komplexen Prozess erfassen,
				(emotional/reflektiv)		der durch ein vielfältiges Muster räumlich und zeitlich veränderbarer
						Botenstoffe hervorgerufen wird.

M22	SoSe2025	Epilog	Vorlesung Epilog: Moleküle der Gefühle	Einstellungen		die Entstehung von Gefühlen als einen komplexen Prozess erfassen,
				(emotional/reflektiv)		der durch ein vielfältiges Muster räumlich und zeitlich veränderbarer
						Botenstoffe hervorgerufen wird.
M30	SoSe2024	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im
			Blasenentleerungsstörungen	(kognitiv)		Zusammenhang mit der Innervation der Harnblase beschreiben können.
M30	WiSe2024	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im
			Blasenentleerungsstörungen	(kognitiv)		Zusammenhang mit der Innervation der Harnblase beschreiben können.
M30	SoSe2025	MW 3	eVorlesung: Leitsymptom: Neurogene	Wissen/Kenntnisse	verstehen	die Wirkung von Anticholinergika auf den Detrusormuskel im
			Blasenentleerungsstörungen	(kognitiv)		Zusammenhang mit der Innervation der Harnblase beschreiben können.