Modul	akad.	Woche	Veranstaltung: Titel	LZ-Dimension	LZ-Kognitions-	Lernziel
	Periode				dimension	
M03	WiSe2023	MW 4	Vorlesung: Vom Genotyp zum Phänotyp	Wissen/Kenntnisse	verstehen	die Bedeutung der Mutationsart ("gain of function", "loss of function") für den
				(kognitiv)		Vererbungsmodus von genetisch bedingten Krankheiten erklären können.
M03	WiSe2023	MW 4	Vorlesung: Vom Genotyp zum Phänotyp	Wissen/Kenntnisse	verstehen	die Begriffe monogen, polygen, kodierende und nicht-kodierende DNA
				(kognitiv)		erklären können.
M03	WiSe2023	MW 4	Vorlesung: Vom Genotyp zum Phänotyp	Wissen/Kenntnisse	verstehen	den Aufbau eukaryontischer Gene (Exon, Intron, Promoter, Silencer,
				(kognitiv)		Enhancer) erklären können.
M03	WiSe2023	MW 4	Vorlesung: Vom Genotyp zum Phänotyp	Wissen/Kenntnisse	verstehen	Genwirkketten und genetisch bedingte Stoffwechseldefekte an den
				(kognitiv)		Beispielen Alkaptonurie und Phenylketonurie beschreiben können.
M03	WiSe2023	MW 4	Vorlesung: Vom Genotyp zum Phänotyp	Einstellungen		die Bedeutung der Gensequenzierung für die Diagnostik und eine
				(emotional/reflektiv)		personalisierte (individuelle) Medizin reflektieren können.
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	erinnern	die Ebenen (Transkription, post-transkriptionelle Mechanismen, Translation)
				(kognitiv)		der Genexpression in räumlicher (Kompartimentierung) und zeitlicher
						Abfolge wiedergeben können.
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	analysieren	Funktionseinheiten transkriptioneller Prozesse (DNA, Transkriptionsfaktoren,
				(kognitiv)		RNA-Polymerasen) charakterisieren können.
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	verstehen	die Bedeutung von Protein-RNA-Komplexen für co- und
				(kognitiv)		post-transkriptionelle Prozesse darlegen können.
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	analysieren	Funktionseinheiten der Translation (Ribosom, mRNA, tRNAs)
				(kognitiv)		charakterisieren können.
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	verstehen	die Bedeutung des Spleißens für die Kodierungsvielfalt eukaryotischer Gene
1				(kognitiv)		beschreiben können
M03	WiSe2023	MW 4	Vorlesung: Regulation der Genexpression	Wissen/Kenntnisse	verstehen	Regulationsprinzipien (Aktivierung, Repression) der Genexpression
				(kognitiv)		beschreiben können.
M03	WiSe2023	MW 4	Vorlesung: Viren als Pathogene und	Wissen/Kenntnisse	verstehen	Methoden zum Nachweis von Viren (z.B. Elektronenmikroskopie, PCR)
			Werkzeuge in der Medizin	(kognitiv)		erläutern können.
M03	WiSe2023	MW 4	Vorlesung: Viren als Pathogene und	Wissen/Kenntnisse	verstehen	die Wirkung von Nukleosidanaloga (z.B. Aciclovir, Ganciclovir) als
			Werkzeuge in der Medizin	(kognitiv)		Virustatika in Grundzügen beschreiben können.
M03	WiSe2023	MW 4	Patientenvorstellung:	Wissen/Kenntnisse	verstehen	die der Fanconi Anämie zu Grunde liegenden Defekte beschreiben können.
			Chromosomenbruchsyndrom:	(kognitiv)		
			Fanconi-Anämie			
M03	WiSe2023	MW 4	Patientenvorstellung:	Einstellungen		die emotionale Herausforderung für jugendliche Patienten oder Patientinnen
			Chromosomenbruchsyndrom:	(emotional/reflektiv)		als Träger einer chronischen, mit einer deutlich erhöhten Morbidität und
			Fanconi-Anämie			Mortalität assoziierten Erbkrankheit zu leben, reflektieren

M03	WiSe2023	MW 4	Seminar 1: Transkription (Synthese und	Wissen/Kenntnisse	analysieren	die verschiedene Klassen der RNA-Moleküle (mRNA, tRNA, hnRNA, rRNA,
			Reifung von RNA)	(kognitiv)		snRNA, miRNA) in menschlichen Zelle ihren Funktionen zuordnen können.
M03	WiSe2023	MW 4	Seminar 1: Transkription (Synthese und	Wissen/Kenntnisse	verstehen	die an der Reifung von mRNAs beteiligten Prozesse (Capping,
			Reifung von RNA)	(kognitiv)		Polyadenylierung, Splicing, Editing, nukleärer Export) in Grundzügen
						beschreiben können.
M03	WiSe2023	MW 4	Seminar 1: Transkription (Synthese und	Wissen/Kenntnisse	verstehen	Funktionsprinzipien von Hemmstoffen der Transkription als Antibiotika und
			Reifung von RNA)	(kognitiv)		Zytostatika (Rifampicin, Actinomycin D, alpha-Amanitin) erläutern können.
M03	WiSe2023	MW 4	Seminar 1: Transkription (Synthese und	Wissen/Kenntnisse	verstehen	den Vorgang der Transkription (Initiation, Elongation, Termination) in
			Reifung von RNA)	(kognitiv)		Grundzügen beschreiben können.
M03	WiSe2023	MW 4	Seminar 1: Transkription (Synthese und	Wissen/Kenntnisse	erinnern	die wichtigsten Funktionen der verschiedenen zellulären Typen der
			Reifung von RNA)	(kognitiv)		RNA-Polymerasen (RNA-Polymerasen I, II, III, mitochondriale Polymerase)
						benennen können.
M03	WiSe2023	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	die grundsätzlichen Abläufe (Initiation, Elongation, Termination) der
			Proteinbiosynthese)	(kognitiv)		eukaryotischen Proteinbiosynthese (Translation) darstellen können.
M03	WiSe2023	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	den Wirkmechanismus verschiedener Antibiotika (Tetrazykline, Makrolide,
			Proteinbiosynthese)	(kognitiv)		Aminoglykoside) als Hemmstoffe der Translation beschreiben können.
M03	WiSe2023	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	die Besonderheiten des genetischen Codes (Universalität, Degeneriertheit,
			Proteinbiosynthese)	(kognitiv)		offener Leserahmen) erläutern können.
M03	WiSe2023	MW 4	Seminar 2: Translation (Mechanismen der	Wissen/Kenntnisse	verstehen	die Bedeutung der tRNAs für die Übersetzung des genetischen Codes in
			Proteinbiosynthese)	(kognitiv)		eine Aminosäuresequenz erläutern können.
M03	WiSe2023	MW 4	Seminar 3: Reifung, Transport und Abbau von	Wissen/Kenntnisse	verstehen	Prinzipien des Transports von Proteinen in den Zellkern und in die
			Proteinen	(kognitiv)		Mitochondrien erläutern können.
M03	WiSe2023	MW 4	Seminar 3: Reifung, Transport und Abbau von	Wissen/Kenntnisse	verstehen	Prinzipien der Qualitätskontrolle von Membranproteinen durch Chaperone
			Proteinen	(kognitiv)		(Heat Shock Proteine, Proteindisulfid-Isomerasen) erläutern können.
M03	WiSe2023	MW 4	Seminar 3: Reifung, Transport und Abbau von	Wissen/Kenntnisse	verstehen	die Bedeutung der Glykosylierung von Proteinen für die Qualitätskontrolle
			Proteinen	(kognitiv)		und die intrazelluläre Proteinsortierung in Grundzügen erklären können.
M03	WiSe2023	MW 4	Seminar 3: Reifung, Transport und Abbau von	Wissen/Kenntnisse	analysieren	Mechanismen des Abbaus von zellulären Proteinen
			Proteinen	(kognitiv)		(Ubiquitin-Proteasom-System und Lysosomen) vom Prinzip her
						charakterisieren können.
M03	WiSe2023	MW 4	Seminar 3: Reifung, Transport und Abbau von	Wissen/Kenntnisse	verstehen	Mechanismen der Translokation bzw. des Einbaus und der Reifung
			Proteinen	(kognitiv)		sekretorischer und transmembranärer Proteine (sekretorischer Weg)
						beschreiben können.
M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Wissen/Kenntnisse	verstehen	die Prinzipien der DNA-Sequenzierung erklären können.
			Genetik	(kognitiv)		

M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Wissen/Kenntnisse	verstehen	die Wirkungsweise einer Substitutionstherapie bei einem Stoffwechseldefekt
			Genetik	(kognitiv)		erklären können.
M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Wissen/Kenntnisse	verstehen	anhand eines sinnesphysiologischen Merkmals (das Schmecken von
			Genetik	(kognitiv)		Phenylthiocarbamid) die Konsequenzen von Variationen in der
						DNA-Sequenz erläutern können
M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Wissen/Kenntnisse	verstehen	die Berechnung von Genotypfrequenzen aus Allelfrequenzen nach dem
			Genetik	(kognitiv)		Hardy-Weinberg-Gesetz darstellen können.
M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Wissen/Kenntnisse	erzeugen	Heterozygotenfrequenzen unter Anwendung des Hardy-Weinberg-Gesetzes
			Genetik	(kognitiv)		berechnen können.
M03	WiSe2023	MW 4	Praktikum: Genphysiologie und biochemische	Einstellungen		erfahren, wie Einsicht in die molekularen Ursachen von Krankheiten zu
			Genetik	(emotional/reflektiv)		therapeutischen Konsequenzen führen kann.