Modul	akad.	Woche	Veranstaltung: Titel	LZ-Dimension	LZ-Kognitions-	Lernziel
	Periode				dimension	
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 1: Einführung	Wissen/Kenntnisse	verstehen	grundlegende Prozesse der objektiven Sinnesphysiologie erklären können.
			Sinnesphysiologie	(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 1: Einführung	Wissen/Kenntnisse	verstehen	Sinnesmodalitäten und Aufteilung in Sinnesqualitäten sowie den Begriff des adäquaten
			Sinnesphysiologie	(kognitiv)		Reizes erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 1: Einführung	Wissen/Kenntnisse	verstehen	die Begriffe Transduktion, Transformation, Transmission, Adaptation, Rezeptives Feld,
			Sinnesphysiologie	(kognitiv)		Somatotopie erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 1: Einführung	Wissen/Kenntnisse	verstehen	das Verhältnis zwischen Reizintensität und subjektive Sinneswahrnehmung anhand des
			Sinnesphysiologie	(kognitiv)		Weber-Fechner-Gesetzes erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 2: Sinne I.	Wissen/Kenntnisse	verstehen	Gemeinsamkeiten und
			Tastsinn/Termosensibilität	(kognitiv)		Unterschiede der Funktionsweise der verschiedenen kutanen Sensoren aufgrund
						der Verschiedenheit ihrer korpuskulären Endigungen bzw. ihrem Rezeptorbesatz
						beschreiben können sowie die Schutz- und Mustererkennungsfunktion der kutanen
						Sensoren erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 2: Sinne I.	Wissen/Kenntnisse	verstehen	Mechanismen der lateralen Hemmung auf der Ebene des
			Tastsinn/Termosensibilität	(kognitiv)		Rückenmarks beschreiben können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 2: Sinne I.	Wissen/Kenntnisse	verstehen	Transduktion und Transformation von Mechanosensoren erläutern können.
			Tastsinn/Termosensibilität	(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 2: Sinne I.	Wissen/Kenntnisse	analysieren	Mechanosensoren nach ihrem Antwortverhalten und ihrer
			Tastsinn/Termosensibilität	(kognitiv)		Adaptationsgeschwindigkeit differenzieren können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 2: Sinne I.	Wissen/Kenntnisse	verstehen	das Verhältnis zwischen Thermoregulation, peripherer und zentraler Thermosenisibilität und
			Tastsinn/Termosensibilität	(kognitiv)		die Beteiligung der TRP-Kanäle bei der Thermosensibilität erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 3: Sinne II.	Wissen/Kenntnisse	verstehen	Mechanismen der
			Schmerz Nozizeption	(kognitiv)		peripheren Sensibilisierung von Nozizeptoren inklusive der beteiligten
						Mediatoren und Rezeptoren erläutern und potenzielle Wege für eine
						analgetische/antiphlogistische Intervention benennen können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 3: Sinne II.	Wissen/Kenntnisse	analysieren	unterschiedliche Schmerzformen (nozizeptiv, inflammatorisch, neuropathisch, oberflächlich,
			Schmerz Nozizeption	(kognitiv)		tief, somatisch, viszeral) charakterisieren können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 3: Sinne II.	Wissen/Kenntnisse	verstehen	an der nozizeptiven Transduktion beteiligte Ionenkanäle und Rezeptoren sowie die
			Schmerz Nozizeption	(kognitiv)		Mechanismen der peripheren Sensibilisierung erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 3: Sinne II.	Wissen/Kenntnisse	verstehen	Verlauf und Verschaltungen der nozizeptiven, aufsteigenden Faserbahnsysteme und des
			Schmerz Nozizeption	(kognitiv)		deszendierenden, endogenen Schmerzkontrollsystems beschreiben können.

Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 3: Sinne II.	Wissen/Kenntnisse	erinnern	pathologische Veränderungen im nozizeptiven System benennen können (zentrale
			Schmerz Nozizeption	(kognitiv)		Sensibilisierung, Schmerzgedächtnisausbildung, Hyperalgesie, Allodynie,
						Phantomschmerz).
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 4: Sinne III.	Wissen/Kenntnisse	verstehen	die grundlegenden
			Auge / Sehen	(kognitiv)		Mechanismen der Verarbeitung visueller Informationen in der Retina und die
						Prinzipien der Retinotopie und funktionellen Spezialisierung im Sehsystem von
						der Retina bis zum visuellen Cortex erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 4: Sinne III.	Wissen/Kenntnisse	verstehen	den anatomischen Aufbau des Auges beschreiben und die Funktionen der einzelnen
			Auge / Sehen	(kognitiv)		Komponenten erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 4: Sinne III.	Wissen/Kenntnisse	verstehen	den Pupillenreflex, Nah- und Fernakkomodation und Schielen
			Auge / Sehen	(kognitiv)		(Strabismus) erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 4: Sinne III.	Wissen/Kenntnisse	verstehen	Transduktion und Transformation am Auge und pathologische Veränderungen dieser und
			Auge / Sehen	(kognitiv)		der Retina erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 5: Sinne IV.	Wissen/Kenntnisse	verstehen	Aufbau und Funktion
			Hören / Gleichgewicht	(kognitiv)		der einzelnen Komponenten des Ohrs erklären können, insbesondere des
						Innenohrs (Transduktion; kochleärer Verstärker).
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 5: Sinne IV.	Wissen/Kenntnisse	verstehen	Funktionen und Schädigungen des Mittelohrs erläutern können (Reduktion
			Hören / Gleichgewicht	(kognitiv)		Schallintensitätsverlust beim Übergang Luft-Innenohrflüssigkeit, Stapediusreflex;
						Hyperakusis bei Parese des N. facialis, Otosklerose).
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 5: Sinne IV.	Wissen/Kenntnisse	verstehen	Funktion und Schädigungen des Innenrohrs erklären und potenzielle
			Hören / Gleichgewicht	(kognitiv)		Interventionsmöglichkeiten benennen können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 5: Sinne IV.	Wissen/Kenntnisse	verstehen	Aufbau und Funktion des Gleichgewichtsorgans erklären können.
			Hören / Gleichgewicht	(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 5: Sinne IV.	Wissen/Kenntnisse	verstehen	vestibulo-spinale und vestibulo-okuläre Reflexe beschreiben können.
			Hören / Gleichgewicht	(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 6: Sinne IV.	Wissen/Kenntnisse	verstehen	die Verschaltung des
			Geruch / Geschmack	(kognitiv)		Bulbus olfactorius und die weitere Verarbeitung von Geruchsinformationen in
						kortikalen und limbischen Strukturen sowie die Geschmacksbahn beschreiben und
						die zugrunde liegenden neuronalen Kodierungsprinzipien erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 6: Sinne IV.	Wissen/Kenntnisse	verstehen	die Bedeutung von Geschmack und Geruch für die Steuerung der
			Geruch / Geschmack	(kognitiv)		Nahrungsaufnahme diskutieren können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 6: Sinne IV.	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung von Geruchsinformationen beschreiben können.
			Geruch / Geschmack	(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 6: Sinne IV.	Wissen/Kenntnisse	verstehen	in Grundzügen die zentrale Verarbeitung der Geschmacksinformationen aus der
			Geruch / Geschmack	(kognitiv)		Mundhöhle beschreiben können.

Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 7: Motorik I	Wissen/Kenntnisse	verstehen	die Grundprinzipien
				(kognitiv)		der Steuerung der Skelettmuskelkontraktion auf spinaler Ebene und die
						Funktionsweise des Eigenreflexbogens erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 7: Motorik I	Wissen/Kenntnisse	verstehen	die Unterschiede zwischen Eigen- und Fremdreflexen beschreiben können.
				(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 7: Motorik I	Wissen/Kenntnisse	verstehen	die allgemeine Funktion von Propriozeption (Muskelspindel,
				(kognitiv)		Golgi-Sehnenorgan) erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 7: Motorik I	Wissen/Kenntnisse	verstehen	erregende und hemmende Mechanismen im Rückenmark beschreiben können.
				(kognitiv)		
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 8: Motorik II	Wissen/Kenntnisse	verstehen	die an der motorischen Steuerung
				(kognitiv)		beteiligten ZNS-Strukturen beschreiben können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 8: Motorik II	Wissen/Kenntnisse	verstehen	die Funktionen der einzelnen an der Motorik beteiligten ZNS-Strukturen im Rahmen der
				(kognitiv)		zentralen Bewegungsplanung und -steuerung erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 8: Motorik II	Wissen/Kenntnisse	verstehen	die Folgen von Läsionen oder Funktionsstörungen der an der motorischen Steuerung
				(kognitiv)		beteiligten Strukturen erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 9: ZNS I.	Wissen/Kenntnisse	analysieren	höhere kognitive
			Aufbau, Kortex Thalamokortikale	(kognitiv)		Funktionen kortikalen anatomischen Strukturen (Präfrontalkortex und
			Verbindungen			Orbitofrontalkortex des Frontallappens, Temporallappen, Parietallappen,
						Okkzipitallappen, Inselkortex, Hippokampus) zuordnen können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 9: ZNS I.	Wissen/Kenntnisse	verstehen	den kolumnären und laminären Aufbau und die modularen Bauprinzipien der Kortizes und
			Aufbau, Kortex Thalamokortikale	(kognitiv)		die Bedeutung der thalamokortikalen Verbindung für die kortikale
			Verbindungen			Funktion beschreiben können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 9: ZNS I.	Wissen/Kenntnisse	verstehen	nicht-invasive Untersuchungsmethoden (EEG, MEG, MRI, PET) des ZNS auflisten und
			Aufbau, Kortex Thalamokortikale	(kognitiv)		zugrundelegende Mechanismen erklären können.
			Verbindungen			
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II.	Wissen/Kenntnisse	verstehen	die physiologischen
			Schlaf Wachheit zirkadiane	(kognitiv)		Voraussetzungen für den Wachheitszustand des Gehirns sowie physiologische und
			Rhythmen			pathologische Veränderungen mit ihren Folgen erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II.	Wissen/Kenntnisse	analysieren	die neuronalen Strukturen im Hirnstamm und Hypothalamus, die Wachheit und Schlaf
			Schlaf Wachheit zirkadiane	(kognitiv)		vermitteln, den beteiligten Transmittersystemen zuordnen können.
			Rhythmen			
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II.	Wissen/Kenntnisse	verstehen	die Bedeutung des orexinergen/hypocretinergen Systems für die Stabilisierung von
			Schlaf Wachheit zirkadiane	(kognitiv)		Wachheit erläutern können.
			Rhythmen			

Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II. Schlaf Wachheit zirkadiane Rhythmen	Wissen/Kenntnisse (kognitiv)	erinnern	die Frequenzbänder des EEGs definieren können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II. Schlaf Wachheit zirkadiane Rhythmen	Wissen/Kenntnisse (kognitiv)	verstehen	Mechanismen der Synchronisation und Desynchronisation des EEG auf Ebene des Thalamus erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 10: ZNS II. Schlaf Wachheit zirkadiane Rhythmen	Wissen/Kenntnisse (kognitiv)	verstehen	funktionelle Unterschiede der verschiedenen Schlafphasen beschreiben, die biologischen Relevanz des Schlafes erläutern und die an der Schlafgenerierung beteiligten Hirnstrukturen benennen können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 11: ZNS III. Kognitive Funktionen, Lernen und Gedächtnis	Wissen/Kenntnisse (kognitiv)	verstehen	den engen Zusammenhang von explizitem Lernen und deklarativem Gedächtnis und spezifischen Mechanismen synaptischer Plastizität und Neuromodulation erläutern können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 11: ZNS III. Kognitive Funktionen, Lernen und Gedächtnis	Wissen/Kenntnisse (kognitiv)	verstehen	Begriffe und Mechanismen der synaptischen Plastizität (Langzeitpotenzierung und -depression der synaptischen Übertragungsstärke; Hebb'sche Synapse) erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 11: ZNS III. Kognitive Funktionen, Lernen und Gedächtnis	Wissen/Kenntnisse (kognitiv)	analysieren	explizite und implizite Gedächtnisinhalte, prozedurales Lernen, sensorisches Gedächtnis, Arbeitsgedächtnis, Kurzzeit- und Langzeitgedächtnis voneinander unterscheiden können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 11: ZNS III. Kognitive Funktionen, Lernen und Gedächtnis	Wissen/Kenntnisse (kognitiv)	verstehen	Störungen des Gedächtnisses beschreiben können: transiente, globale Amnesie, retrograde und anterograde Amnesie, Korsakoff-Syndrom, Delir, Demenz (vaskulär; M. Alzheimer; Lewy-Körperchen-Demenz).
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 12: ZNS IV. Emotion und Motivation	Wissen/Kenntnisse (kognitiv)	erinnern	an motivationalem und emotionalem Verhalten beteiligte Gehirnareale aufzählen und entsprechende Funktionen zuordnen können (Präfrontalkortex, Orbitofrontalkortex, Gyrus cinguli, Inselkortex, Hypothalamus, Hippocampus, Amygdala, Epiphysenstiel, Nucleus accumbens, ventrale tegmentale Area).
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 12: ZNS IV. Emotion und Motivation	Wissen/Kenntnisse (kognitiv)	verstehen	die Rolle der Wechselwirkung von Amygdala und Präfrontalkortex bei Depression, Angststörungen und posttraumatischen Belastungsstörungen (PTSD) erklären können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 12: ZNS IV. Emotion und Motivation	Wissen/Kenntnisse (kognitiv)	verstehen	die Bedeutung des Belohnungssystems für motiviertes Verhalten und seine Rolle in der Suchtentstehung beschreiben können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 13: ZNS V. Neurovegetative Regulation	Wissen/Kenntnisse (kognitiv)	verstehen	den generellen Aufbau (vegetative Reflexe, spinale und supraspinale Zentren, Hypothalamus) und Funktionsprinzipen der neurovegetativen Regulation (Homöostase, Allostase) beschreiben können.

Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 13: ZNS V.	Wissen/Kenntnisse	verstehen	die Rolle des Hypothalmus bei der Steuereung lebenswichtiger vegetativer Parameter und
			Neurovegetative Regulation	(kognitiv)		bei Emotionen beschreiben können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 13: ZNS V.	Wissen/Kenntnisse	verstehen	die Stressantwort als Aktivierung des autonomen Nervensystems und der
			Neurovegetative Regulation	(kognitiv)		Hypothalamus-Hypophysen-Nebennieren-Achse darstellen können.
Neurophysiologie	WiSe2023	Vorlesung	Neurophysiologie 13: ZNS V.	Wissen/Kenntnisse	verstehen	die Regulation der Nahrungsaufnahme beschreiben und unterschiedliche Formen der
			Neurovegetative Regulation	(kognitiv)		Essstörung auflisten können.
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 1: Sinne:	Wissen/Kenntnisse	verstehen	Untersuchungsmethoden in der Ohrenheilkunde
			Hören und Gleichgewicht	(kognitiv)		darstellen können (Tonaudiometrie, Sprachaudiometrie, otoakustische
						Emissionen für Neugeborenenscreening; Tests nach Rinne und Weber)
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 1: Sinne:	Wissen/Kenntnisse	analysieren	Schallleitungs- und Schallempfindungsstörungen voneinander abgrenzen können.
			Hören und Gleichgewicht	(kognitiv)		
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 1: Sinne:	Wissen/Kenntnisse	verstehen	physiologische und pathologische Nystagmen (z. B. im Rahmen eines Drehschwindels bei
			Hören und Gleichgewicht	(kognitiv)		einseitigem Labyrinthausfall) erklären und differenzieren können.
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 2: ZNS	Wissen/Kenntnisse	verstehen	den Aufbau des
				(kognitiv)		optischen Apparats, Brechungsfehler, Myopie, Hyperopie, Astigmatismus,
						Akkomodationsstörungen (z. B. Presbyopie), Katarakt (Linsentrübung) und deren
						Korrekturmöglichkeiten erklären können.
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 2: ZNS	Wissen/Kenntnisse	verstehen	Untersuchungsmethoden in der Augenheilkunde darstellen können (Visusbestimmung,
				(kognitiv)		Anomaloskopie, Refraktometrie, Perimetrie).
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 3: Reflexe	Fertigkeiten	anwenden	an oberer und
				(psychomotorisch,		unterer Extremität jeweils zwei verschiedene Muskeleigenreflexe beidseits mit
				praktische Fertigkeiten		seitengleicher Reizintensität untersuchen können (am M. biceps brachii und M.
				gem. PO)		triceps brachii; am M. quadriceps femoris und triceps surae).
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 3: Reflexe	Fertigkeiten	anwenden	zwei Modulationsmethoden von Muskeleigenreflexen durchführen können (passive
				(psychomotorisch,		Vordehnung, Jendrassik-Manöver).
				praktische Fertigkeiten		
				gem. PO)		
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 3: Reflexe	Fertigkeiten	anwenden	am Beispiel des Achillessehnenreflexes eine Reflexbahn elektrisch aktivieren
				(psychomotorisch,		(Hoffmann-Reflex), das entsprechende Elektromyogramm (EMG) anfertigen und
				praktische Fertigkeiten		Latenzzeiten und Amplituden im EMG unter modulierenden
				gem. PO)		Bedingungen bestimmen können.
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 4: Sinne:	Wissen/Kenntnisse	verstehen	die Durchführung der
			Sehen	(kognitiv)		Elektrodenpositionierung und die Erfassung und Beurteilung
						elektrophysiologischer Antworten (EEG, SEP, VEP, MEP) erläutern und die
						Methoden beschreiben können.

Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 4: Sinne:	Wissen/Kenntnisse	verstehen	die verschiedenen EEG-Wellen und den Berger-Effekt beschreiben können.
			Sehen	(kognitiv)		
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 4: Sinne:	Wissen/Kenntnisse	verstehen	die Methodik von sensorisch-evozierten Potenzialen zur Funktionsüberprüfung des
			Sehen	(kognitiv)		somatosensorischen Systems erklären können.
Neurophysiologie	WiSe2023	Praktikum	PR Neurophysiologie 4: Sinne:	Wissen/Kenntnisse	verstehen	die Methodik von motorisch-evozierten Potenzialen zur Funktionsüberprüfung des
			Sehen	(kognitiv)		motorischen Systems erklären können.